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Abstract

This paper describes a new method, using genetic algorithms, for transforming non-orthogonal geometric models
into orthogonal polygon models. The algorithm is applied to a series of non-orthogonal models and the results
compared with those obtained from a fuzzy logic approach [1]. A similarity measure is defined to assess and compare

the success of the transformations.
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1. Introduction

Operations on, and the manipulation of, non-ortho-
gonal models are more complex than the equivalent

procedures for orthogonal models. In many branches of
engineering the processing of non-orthogonal models is
required and considerable effort may be saved by pro-
cessing an equivalent transformed orthogonal model.

This type of transformation enables the solution of
complex non-orthogonal problems using simple algo-
rithms applied to the equivalent orthogonal model. For

example, partitioning of geometric objects for parallel or
distributed processing is usually undertaken on a finite
element mesh [2,3]. In some cases, simple algorithms

cannot be applied to non-orthogonal problems and
hence these transformations are particularly useful. The
application of fuzzy logic to orthogonal transformation
problems has been shown to be a very promising

approach [1]. The genetic algorithm approach described
here concentrates on a controlled change in the coordi-
nates of the vertices while at the same time preserving all

topological connections between the model entities.

1.1. Similarity

It is important that the transformation should result
in orthogonal models that are as similar as possible to
the original models. Similarity is a very complex pro-
blem that has been recently explored for the purpose of

geometry searching engines [4,5]. There are two elements

that can be used to define similarity, i.e. edges and vertex
angles. The degree of similarity is calculated as an
average value as follows:
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where: i 2 {1, . . . , N} refers to a particular edge (or
internal angle) of the total number of edges (or internal
angles), N, of a model. The first term is a measure of the

similarity of the edges. To assess the similarity in a
dimensionless form, the ratio by which all the edges are
increased (or decreased) in the transformation is calcu-

lated as follows:
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The second term in Eq. (1) relates to the similarity of the
internal angles where �n–ortho is a measure of an angle in
the non-orthogonal model, and �ortho is a measure of an

angle in the orthogonal model after transformation. The
degree of similarity will be equal to 1.0 when the models
are identical.
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2. Genetic algorithm implementation

The application of genetic algorithms to the ortho-
gonal transformation of two-dimensional models is
described and discussed in this section. This strategy

represents a very different approach compared with the
fuzzy logic transformation approach presented in refer-
ence [1]. The model, specifically a boundary of the

model, is treated as a disconnected entity and can be
imagined as a number of straight and stiff bars (edges)
connected with joints (vertices). Hence the only elements
of the model that are mobile are the vertices, which can

be moved within a limited range in the two-dimensional
coordinate system. Movement of the vertices implies
changes in the positions of the edges. The process is

illustrated in Fig. 1. The model obtained by moving the
vertices is the orthogonal transformed model. Addi-
tionally, the new shape of the model should be as similar

as possible to the shape of the original model. The coded
variables are the coordinates of the vertices of the
model. Vertices in a two-dimensional model are descri-

bed by two coordinates (x, y), which are considered to
be independent in all aspects of the calculations. Con-
sequently, the number of variables describing the 2D
model is doubled when compared to the number of

vertices in the model. Constraints on the positions of the
vertices (model control) are formulated to ensure that
the vertices are not moved into inappropriate positions

by the genetic algorithm. The fitness function used by
the genetic algorithms is:

F ¼ Cþ �F1 þ �F2 þ 
F3 ð3Þ

The first term C is used to ensure that the optimisation is
a maximisation problem where the value of C is non-

negative. The second term in F controls the orthogon-
ality of the genetic algorithm transformation. The

orthogonal character of a model is measured by the
values of angles between adjacent edges in the model.
Following this reasoning this term in F is defined by the

function F1:

F1 ¼
XN
i¼1

fðqiÞ ! max; ð4Þ

where N is the number of vertices in the model and f(�i)
is a function depending on a particular normalised angle
�i between two adjacent edges. A fourth-order poly-

nomial was used to define this function. The angle �i is
normalised within each sub-domain range [ai; bi] as
follows:

qi ¼
�i � ai
bi � ai

2 ½0; 1� ð5Þ

Once the angles are normalised the function fn(qi) is
defined and used instead of f(�i) in the fitness function.

The normalised function is shown below:

fnðqiÞ ¼

0 for �i 2 ½0; 45�
ðqiÞ4 for �i 2 ½45; 90�
ð1� qiÞ4 for �i 2 ½90; 135�
ðqiÞ4 for �i 2 ½135; 180�
ð1� qiÞ4 for �i 2 ½180; 225�
ðqiÞ4 for �i 2 ½225; 270�
ð1� qiÞ4 for �i 2 ½270; 315�
0 for �i 2 ½315; 360�
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Function F2 in the fitness function is defined as follows:

Fig. 1. Model transformation using variation of the coordinates of the vertices.
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F2 ¼
XN
i¼1

gð�iÞ ! min ð7Þ

where g(�i) calculates the difference between corre-
sponding angles in the models before and after
transformation.

gð�iÞ ¼ �originali � �calculatedi

��� ��� ð8Þ

To be consistent with the previous definition of the term

in F the normalised function is used when defining the
function F2. The value of g(�i) is divided by 180. This is
the maximal expected difference between the original

and calculated angles. Consequently, the normalised
function gn(�i) provides values within a range [0; 1].

gnð�iÞ ¼
gð�iÞ
180

ð9Þ

The final function F3 is responsible for assignment of the

edges to the coordinate axes and is defined as follows:

F3 ¼
Xn�1
i¼0

hð iÞ ! max ð10Þ

where  i is the angle between the edge (i) and the x-axis.
The angles between an edge and both axes linearly

depend on each other in the two-dimensional system.
That is why it is sufficient to operate with only one of the
angles. The angle  i is normalised in the same way as the

angle �i. The angle  i is normalised within the sub-
domain range [ai; bi] as follows:

pi ¼
 i � ai
bi � ai

2 ½0; 1� ð11Þ

As the result of the normalisation the normalised angle
pi is equal to 0 if  i = ai and is equal to 1 if  i = bi.
Consequently, the function h uses the normalised angle

pi defined in each sub-domain (using Eq. 11) instead of
the angle  i.

Table 1

Degrees of similarity obtained for the same models using two different transformation methods (fuzzy logic and GA)
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hnðpiÞ ¼

ð1� piÞ4 for  i 2 ½0; 45�
ðpiÞ4 for  i 2 ½45; 90�
ð1� piÞ4 for  i 2 ½90; 135�
ðpiÞ4 for  i 2 ½135; 180�
ð1� piÞ4 for  i 2 ½180; 225�
ðpiÞ4 for  i 2 ½225; 270�
ð1� piÞ4 for  i 2 ½270; 315�
ðpiÞ4 for  i 2 ½315; 360�

8>>>>>>>>>>><>>>>>>>>>>>:
ð12Þ

To ensure that the algorithm performed satisfactorily
the values of the weight coefficients �, � and 
 in the

fitness function (Eq. 3) were found after many trial runs:
C = nb_edges 	 j�j, � = 10000, � = �900, and 
 =
10 000, where nb_edges is the number of edges in the

non-orthogonal model. The C value guarantees that the
function F is non-negative.

3. Conclusions: comparison between genetic algorithm

and fuzzy logic transformations

Some sample results are shown in Table 1. The table
compares the values of the degree of similarity calcu-
lated for both the genetic algorithm and fuzzy logic [1]

transformation techniques. The degree of similarity is a
parameter, which is measured between the original non-
orthogonal and the transformed orthogonal models
when using the transformation methods. Examination

of the results does not show unambiguously that one of
the methods always creates orthogonal models with a
higher similarity than the other method. On the contrary

the degree of similarity is comparable for both methods,
which indicates that the models obtained are possibly
the best orthogonal models that can be transformed

from the given original models.
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