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Abstract

Markov chain Monte Carlo is a method for simulation from a probability density function which is known up to a

normalizing constant. Application of this method for evaluation of a probability of failure is presented. Several ideas
which facilitate the proposed approach are provided. An illustrative numerical example is given.
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1. Introduction

Evaluation of the probability of failure is essential in a
structural reliability analysis. Probability of failure is
defined as the integral of probability density function

over the region in random variable space, for which
failure occurs [1]. Due to the usually high number of
random variables in real life applications, numerical
integration is inefficient for this problem. In practice,

first- or second-order approximation methods (FORM/
SORM [1]) are often used to evaluate probability of
failure. However, applicability of these methods is lim-

ited to problems satisfying certain conditions. An
alternative is the Monte Carlo integration. Since a fail-
ure event is usually rare, it is common to apply

importance sampling in order to facilitate calculations.
Some well-developed algorithms for structural reliability
are available; however, all of them have certain limita-

tions. Thus, the author found it interesting to investigate
application of the so-called Markov chain Monte Carlo
method for evaluation of the probability of failure.
Markov chain Monte Carlo is any simulation method

producing an ergodic Markov chain with a given sta-
tionary distribution [2,3]. Concerning the number of
samples required for an estimation of expectations these

methods are less efficient than importance sampling.
However, Markov chain Monte Carlo does not need an
additional optimization algorithm, because it explores

the random variable space by itself. It is also worth

mentioning that during recent years Markov chain
Monte Carlo has attracted a great deal of attention from

researchers. This has resulted in the fast development of
the method and many successful applications in various
scientific areas. Yet, the only paper known to the author

that presents a slightly different approach to the appli-
cation of Markov chain Monte Carlo to the evaluation
of probability of failure is [4].

2. Structural reliability analysis by importance sampling

The time invariant structural reliability problem is
usually defined as follows [1]. Uncertain structural
parameters are represented by a real-valued random

vector X = (X1, X2, . . ., Xn), with probability density
function f(x). Structural performance with respect to
random parameters is reflected by a limit state function

g(x). The limit state function is defined to take negative
values for parameters for which failure occurs. Thus, the
limit state function defines a subset in the random

variable space called the failure domain �F = {x : g(x �
0)}. Finally, the probability of failure is defined as

PF ¼
Z

�F

fðxÞdx ð1Þ

PF can be evaluated by means of Monte Carlo integra-
tion. Since for engineering structures a small probability
of failure is desired, the crude Monte Carlo is inefficient

for such problems. Therefore, application of variance*Tel.: +48 (22) 827 46 92; E-mail: kkolanek@ippt.gov.pl
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reduction techniques like importance sampling is usually
attempted. The importance sampling for evaluation of

PF is formulated based on Eq. (1), rewritten as follows:

PF ¼
Z

�F

fðxÞ
hðxÞ hðxÞdx ¼ Eh IðgðxÞ � 0Þ fðxÞ

hðxÞ

� �
ð2Þ

where h(x) is an importance sampling density, I(	) is the
indicator function of the failure domain, and Eh denotes
an expectation operation with respect to the density

h(x). Having m independent sample points x(k), (k = 1,
. . . , m) from distribution h(x), the expectation in Eq. (2)
can be estimated from

P̂F ¼
1

m

Xm
k¼1

IðgðxðkÞÞ � 0Þ fðx
ðkÞÞ

hðxðkÞÞ ð3Þ

The optimal density function h(x) that minimizes var-
iance of this estimator has the following form:

h
ðxÞ ¼
fðxÞ
PF
; if gðxðkÞ � 0Þ

0, otherwise

�
ð4Þ

However, this formula is rather formal, since gen-
eration of independent random variables requires the

knowledge of the term of interest PF. In practice the
distribution, from which samples are produced, is
usually chosen to resemble the distribution with density

f(x) truncated to the failure domain. On the other hand,
if the sample independence requirement is omitted
Markov chain Monte Carlo can be used to generate a

sample from the density h*. Obviously, an estimator
based on a dependent sample will no longer be optimal.
Nevertheless, it seems that for some problems an algo-
rithm based on Markov chain Monte Carlo should be

more efficient than the crude Monte Carlo and easier to
apply than the importance sampling.

3. Markov chain Monte Carlo for evaluation of the

failure probability

This section outlines the Metropolis-Hastings algo-
rithm, which is the most general form of the Markov
chain Monte Carlo. However functions specific for

reliability analysis are used in the presented formulas.
Comprehensive coverage of Markov chain Monte Carlo
can be found in the book by Robert et al. [2]. The
Metropolis-Hastings algorithm starts with the target

density from which is to be simulated h* in the con-
sidered case. The so-called proposal (instrumental)
distribution, with a conditional density q(yjx), is then

chosen. To facilitate implementation of the algorithm it
should be easy to simulate from q(	jx) and it must be
symmetric or (either) explicitly known up to normalizing

constant. The Metropolis-Hastings algorithm generates

a Markov chain X(t) (t = 0, . . ., T) with stationary
distribution h* by iterating two steps. In the first step a

potential consecutive state of the Markov chain is gen-
erated from the proposal distribution

Yt � qðy xðtÞ
�� Þ ð5Þ

where x(t) is the current state of the chain. In the second
step the proposed state is accepted or the current state is

repeated according to the following formula:

Xðtþ1Þ ¼ Yt with probability �ðxðtÞ,YtÞ
xðtÞ with probability 1� �ðxðtÞ,YtÞ

�
ð6Þ

where

�ðx,yÞ ¼ min
h
ðyÞ qðx yj Þ
h
ðxÞ qðy xj Þ ,1
� �

ð7Þ

The so-called acceptance probability �(x,y) is obviously
defined only when h*(x) > 0. Hence a starting point x(0)

must be located in the failure domain if the target den-

sity is given by Eq. (4). Finding such a point might be
difficult when the probability of failure is small. It is
possible to overcome this problem by modifying the
density function f(x). The proposed modification of the

target density function, similar to exponential tilting [5],
is defined as

htðxÞ ¼
1

Ct
expð�rðgðxÞÞÞ fðxÞ ð8Þ

where Ct is a normalizing constant and r(	) is a function

with properties similar to a penalty function used in
constrained optimization [6]

rðyÞ ¼ 0 for y � 0
> 0 for y > 0

�
ð9Þ

The function r(	) should be selected to quickly depress

ht(x) with increasing value of the limit state function g.
However, if the selected starting point is located outside
the failure domain ht(x

(0)) should have a positive value.

Performance of the algorithm obviously depends on
the choice of a proposal density for a given target dis-
tribution. Specifying the good proposal distribution can

be a difficult task, especially for high dimensional pro-
blems. There are several papers on optimality of
Markov chain algorithms for normal target density
[7,8,9]. Recently, several methods were also developed

allowing optimization of a parametric proposal dis-
tribution during a chain run [10,11,12]. One of the basic
and often used proposal distributions is normal dis-

tribution with mean in the most recent state of the chain.
The scaling parameter of this distribution can be
adjusted or optimized during the run of the chain in

order to maximize performance of the algorithm.
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A basic Markov chain Monte Carlo estimator for
expectations is the usual empirical average

1=T
PT

t¼1 ~gðXðtÞÞ, where ~g is a function whose expecta-
tion is to be evaluated. Unfortunately this estimator is
useless for estimation of expectation in Eq.(2). To cal-

culate PF by the outlined algorithm, it is necessary to
apply methods dedicated to evaluation of the normal-
izing constants of the target distribution. There are

several methods available for this purpose; comparison
of them can be found in [13].
One of the methods applicable for evaluation of PF is

based on the Laplace approximation [13]. It uses a point

comparison of density h* and a normal approximation
to a distribution of the generated Markov chain

P̂FL ¼
h
ðx
Þ

�ðx
,x
,�̂Þ
ð10Þ

where � is the normal density function, x* is the esti-

mated point maximizing h*(x) and �̂ is the estimated
covariance matrix of X(t). The other method for com-
putation of normalizing constants takes advantage of

the modified importance sampling estimator. The
resulting formula for the probability of failure is

P̂FI ¼
1

T

XT
t¼1

h
ðXðtÞÞ
p̂ðXðtÞÞ

ð11Þ

where p̂ is an approximated density function of the

generated sample. This approximation can be obtained
by a normal approximation, a mixture of normals, or a
kernel density estimation, for instance. The presented

approach differs slightly from the usual importance
sampling, because the sampling distribution is evaluated
from the sample produced by the Markov chain Monte
Carlo algorithm.

It has already been mentioned that some of the pro-
posal points Yt are rejected when the chain X(t) is being
generated. Surprisingly, for a multi-normal target dis-

tribution, optimal performance of the algorithm is
attained when approximately 75% of the proposal
points are rejected. Such a waste of effort is difficult to

accept, especially when evaluation of the limit state
function is expensive. However, some methods utilizing
all generated proposals have been suggested [14,15]. The

importance sampling estimator proposed in Eq. (11) can
be applied to all generated proposal points.
The derivation of an analytical expression for the

error of the proposed methodology seems to be a rather

difficult problem. Note that it is necessary to take into
account dependence of the samples and several
approximations used in a sequence to obtain a final

estimate. However, standard deviation and bias of the
estimators obtained with the proposed methodology can
be evaluated by resampling methods like the bootstrap

[16]. For estimators using all proposed samples, a simple
bootstrap for independent samples can be applied, while

methods for resampling of the time series should be
applied for estimators using the output of the chain.

4. Numerical example

The presented example is taken from Engelund et al.
[17]. Its purpose is to investigate performance of the

algorithm for different numbers of dimensions and dif-
ferent probability levels. The limit state function is an n-
dimensional hyperplane gðxÞ ¼ �n1=2 �

Pn
i¼1 xi where

random variables Xi, i = 1, 2, . . . , n are independent,
normal distributed variables. The Metropolis-Hastings
algorithm with procedure optimizing proposal density
was employed [12]. The proposed distribution was nor-

mal with a diagonal covariance matrix and a single
scaling parameter. The target density was similar to Eq.
(8) with linear ‘penalty function’ r(y) = 30y. The chains

started from the origin point. Estimates of failure
probability relative to the exact value and coefficients of
variations of the estimates are shown in Fig. 1. Calcu-

lations were made for � = 1, � = 5 and � = 10 and for
n= 2, n= 10 and n= 30. The results were obtained for
7000 simulations; the algorithm was implemented in the
R environment [18]. High sensitivity of the algorithm to

the number of dimensions can be seen.

5. Conclusions

In this article the author outlined how to apply
Markov chain Monte Carlo to the evaluation of the
probability of failure. It was shown how to take

advantage of general statistical methods, rather than
detail description of the algorithm. The performance of
the algorithm presented in the example is not very good.

However, it should be borne in mind that no additional
algorithm for localization of the design point was used.
Thus, the results refer to total costs of the analysis. Also,

a rather basic algorithm was utilized. The application of
general methods gives a possibility for easy use of future
techniques which would enhance the performance.
Moreover, the Metropolis-Hastings algorithm can also

be applied for limit state functions with a complicated
shape.
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Fig. 1. Sensitivity of the algorithm to the number of dimensions and the reliability level (7000 simulations).
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