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Abstract

We present a new approach for robust mesh adaptation. Optimizing a given quadrilateral mesh to the requirement of
the problem is the topic of this paper. This research work deals with generating adaptive quadrilateral meshes using a

discrete area functional. Optimization of this functional tries to equidistribute error/gradient/factors that cause error
(analytically given or computed on the initial mesh) over each quadrilateral cell. This paper presents various examples
of generating adaptive meshes.
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1. Introduction

It is widely accepted that quadrilateral meshes in 2D

and hexahedral meshes in 3D are better than other
meshes in many ways. But unfortunately generating
adaptive quality quadrilateral and hexahedral cells has

not been much explored.
The accuracy of any numerical method (FD, FV, FE,

etc.) depends highly on the quality (smoothness, con-

vexity, orthogonality, linearity, etc.) of the underlying
meshes, and the number of nodes and cells in the mesh.
It is not always feasible to blindly refine the mesh in the

hope of capturing the physics because of the computa-
tional resources. It is desired to adapt the grid to the
requirement of the underlying problem. We thus gen-
erate more grid points and cells in the region of more

activity (non-linear changes, high solution gradients,
etc.), while maintaining the quality of the underlying
mesh. It is always desirable to concentrate the grid

points and cells in the region of greatest chemical and
physical change instead of the region where the solution
has nearly zero gradient. The aim of this paper is to

adjust the mesh by getting a feeling of the solution on
the initial mesh.

This article is divided as follows: in section 2 a brief

introduction to the discrete area functional is presented,
in section 3 some numerical examples are presented, and
finally section 4 concludes this article.

2. Discrete area functional

The first study of area functionals was done by [1].

Following the author’s conclusions they have not been
used till now for generating an adaptive mesh. Let a
quadrilateral mesh consist of I internal nodes, and let

node k be surrounded by four quadrilaterals (the mesh
can be unstructured). The authors would like to propose
the following form of the area functional for an adaptive

grid:

Fðx,yÞ ¼
XI
k¼1
½
X4
i¼1
ðJðkiÞÞ2 	 SðkiÞ� ð1Þ

where J(ki) is the Jacobian for cell i at node k, and S(k) is

the adaptive function, S(ki) is the value of the adaptive
function S(k) at the center of the cell i. S(ki) must be
greater than zero for each cell. S(ki) is assumed constant

for a cell. Optimization of Eq. (1) will equi-distribute the
product of the area of each cell and the adaptive func-
tion. The cell which has the largest value of S(ki) will be

the smallest. If S(ki) is the same for each cell then the
optimization of Eq. (1) will try to generate cells of equal
area.
The Jacobian matrix at a node for a cell is the matrix

whose columns are the covariant vectors at that node,
and the Jacobian is the determinant of this matrix.
For the node O and the surrounding cells 1, 2, 3 and 4

as shown in Fig. 1 the Jacobian will be expressed as
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JðO1Þ ¼
ðx4� xÞ ðx1� xÞ

ðy4� yÞ ðy1� yÞ

������
������, JðO2Þ ¼

ðx2� xÞ ðx1� xÞ

ðy2� yÞ ðy1� yÞ

������
������

JðO3Þ ¼
ðx2� xÞ ðx3� xÞ

ðy2� yÞ ðy3� yÞ

������
������, JðO4Þ ¼

ðx4� xÞ ðx3� xÞ

ðy4� yÞ ðy3� yÞ

������
������

Two important properties of the functional F(x, y) are:
. The critical point of the functional is a grid for which

the product of cell area and the adaptive function is

the same for every cell.
. The Hessian is semipositive definite.
Among all the meshes with the same boundary, it is

required to determine the one whose inner points mini-
mize the functional (1). The minimization can be
performed by iterative algorithms such as Truncated
Newton.

A quadrilateral mesh is called convex if each of its
cells is convex. A quadrilateral will be convex if the four
triangles in it have positive area. Since the Jacobian at a

point for a cell is twice the area of the corresponding
triangle, the minimization of this functional will make
sure that all the triangles of a quadrilateral cell have

positive area (given such a minimum exists).

3. Numerical example

Two kinds of numerical example are presented. In the
first numerical example, the adaptive function is given

analytically, and in the second the adaptive function is
derived from the discrete gradient of the solution com-
puted on the initial mesh.

3.1. Example 1

In this example, the initial mesh is a 64 � 64 cartesian
mesh. The adaptive functions are given as

Sðx,yÞ ¼ 1:0þ e� tanh ð2000:0ðx�0:5Þ2þð2000:0ðy�0:5Þ2�12:50000000Þ

ð2Þ

Sðx,yÞ ¼ 1:0þ etanh ð10:0ðx�0:5Þ2þ10:0ðy�0:5Þ2�18:750000000Þ

ð3Þ

Sðx,yÞ ¼ 1:0 þ e� tanh ð200:0ðx�0:25Þ2þ200:0ðy�0:25Þ2�12:50000000Þ

þ e� tanh ð200:0ðx�0:75Þ2þ200:0ðy�0:25Þ2�12:50000000Þ

þ e� tanh ð200:0ðx�0:25Þ2þ200:0ðy�0:75Þ2�12:50000000Þ

þ e� tanh ð200:0ðx�0:75Þ2þ200:0ðy�0:75Þ2�12:50000000Þ

ð4Þ

Sðx,yÞ ¼ 1:0 þ e� tanh ð200:0ðx�0:5Þ2þ200:0ðy�0:5Þ2�12:50000000Þ

þ e� tanh ð200:0ðx�0:25Þ2þ200:0ðy�0:25Þ2�12:50000000Þ

þ e� tanh ð200:0ðx�0:75Þ2þ200:0ðy�0:25Þ2�12:50000000Þ

þ e� tanh ð200:0ðx�0:25Þ2þ200:0ðy�0:75Þ2�12:50000000Þ

þ e� tanh ð200:0ðx�0:75Þ2þ200:0ðy�0:75Þ2�12:50000000Þ

ð5Þ

Figures 2(a), (b), (c) and (d) show the converged adap-
tive meshes produced by Eqs. (3), (4), (5) and (2)

respectively. It is clear from Fig. 2 that all the cells
generated by the adaptive functional are convex.

3.2. Example 2

We solve Eq. (6) on a unit square using the multi-

point flux approximation (MPFA-O) methods [2].
MPFA are higher-order cell-centered finite volume
methods. The exact solution is Eq. (7). We enforce the

solution inside the domain by the f (x,y) term and
boundary condition:

�r 	 ðruÞ¼fðx,yÞ ð6Þ

uðx,yÞ¼e�100ðx�1=2Þ
2�100ðy�1=2Þ2 ð7Þ

In this example, the adaptive function is computed from
the gradient of the discrete solution. The initial mesh is a

31 � 31 cartesian mesh, as shown in Fig. 2(f). Let the
solution be uh and Huh be its gradient by the MPFA-O
discretization.

The adaptive function is defined as follows:

Sðx,yÞ¼ 1:0 þ e
uhk k þ ruhk kð Þ

1:0þ ruhk kð Þ

� �
ð8Þ

Table 1 shows l2 and l1 errors on the initial and adap-
tive meshes.

4. Conclusion

In this article a new robust (quadrilaterals remain
convex) idea for generating adaptive quadrilateral

meshes is presented. This idea can be very useful in
solving evolutionary problems (parabolic, hyperbolic
equations) on adaptive meshes. The author is extending

the same idea for a hexahedral mesh in 3D.

Fig. 1. 2D mesh.
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Fig. 2. Meshes a, b, c, d, e were adapted by Eqs (2,3,4,1) respectively. Mesh f is the initial mesh for Eq. (5).

Table 1

Example 2 – error in the L2 and L1 norms

Mesh u� uhk kl2 u� uhk kl1
Initial Fig. 2(f) 0.00259862 0.0256077

Adapted by Eq. (8) Fig. 2(e) 0.000906869 0.00759576
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