
Towards automated optimization

Andreas Junghannsa,*, Dirk Petzoldtb, Jonas Dagefördec, Marcus Meyera

aDaimlerChrysler, Research and Technology, Alt-Moabit 96a, HPC U118, 10559 Berlin, Germany
b SAP Deutschland AG & Co. KG, Neurottstrasse 15, 69190 Walldorf, Germany

cDaimlerChrysler, 800 Chrysler Drive, Auburn Hills, MI 48326, USA

Abstract

The optimization literature has traditionally concentrated more on the power of optimization algorithms and not so

much on their accessibility. In this paper we develop a methodology to automate optimization and thus to ease access to
the multitude of optimization methods and their specific parameter settings. This will help engineers to solve more of
their non-trivial optimization problems without (expensive) mathematically skilled help.

We show a prototypical system with this ‘scheduling’ functionality: it analyses a user-specified optimization problem,
finds its optimizer-relevant properties, selects the ‘best’ of the available methods, sends the problem to the selected
optimizer, and starts it with the appropriate parameters.

Preliminary, yet promising, results show that the basic idea works in principle and that future research in this area has
high potential.

Keywords: Automated optimization; Optimization problem classification; Optimization scheduling

1. Introduction

1.1. The optimization process

Solving optimization problems is considered as
something like an art: it requires considerable knowl-
edge, skill and intuition about the domain, the methods,

and the tools in order to find a satisfactory solution to
the original problem under the resource constraints
imposed by the real world environment.

Theoretically, optimization is a sequential process of
abstracting, modeling and running optimization soft-
ware. In practice, however, information gained later in

the process may be relevant to earlier decisions. For
instance, inspecting the performance, e.g. the con-
vergence rate of an optimizer, might lead to the change
of a certain parameter value of the algorithm or even the

selection of a different method. In some cases, it might
even lead to remodeling of the problem, because mod-
eling an optimization problem allows for different

abstraction levels, modeling styles, modeling languages,
etc., as depicted in Fig. 1.

When considering the research efforts of the past
decades, much effort has gone into the advancement of
optimization algorithms. However, every time a new
powerful alternative becomes available, it gets harder to

choose from the increasing array of methods and tools,
and harder still to adequately operate them.

1.2. Application scenarios

When we started our research efforts, we had the
following three application scenarios in mind:
1. Decision support for the engineer We would like to

make optimization a standard application ‘at the
fingertips’ of the engineer. The necessary knowledge
required for the user should be as minimal as pos-

sible, even at the expense of losing some efficiency.
Ideally, the user is only responsible for the problem
description and, as long as this description is syn-

tactically correct and a solution exists, a solution is
presented. The goal is to describe only what and not
how to solve it.

2. Automatically composed optimization problems Large

knowledge bases, such as product documentation
systems, are filled with information that can be used
to build optimization problems automatically. For

example, one could use customer preferences to

*Corresponding author. Tel.: + 49(30) 399 82 478; Fax:

+49(0) 7 11 3052 111 819; E-mail: andreas.junghanns

@dcx.com

1259

2005 Elsevier Science Ltd. All rights reserved.

Computational Fluid and Solid Mechanics 2005

K.J. Bathe (Editor)

Written under contract to DaimlerChrysler Research and Technology.

exclude certain product alternatives, restrict para-
meters and adapt the objective function in a product

configuration tool. The resulting optimization pro-
blem can vary widely, even if it is created from the
same knowledge base.

3. Optimizing black-box functions Analyzing engineer-
ing design alternatives today means using complex,
expensive special purpose functions, such as simu-

lations, as part of the objective. It is in general
impossible to analyze black-box functions a priori,
especially when they are applied to different kinds of
user data. This has led to a recent increase of interest

concerning so-called direct optimization methods,
which use only the value of the objective function
itself, and do not need any additional information,

i.e. the Jacobian or Hessian of the objective function.
Examples are the algorithms [1,2,3,4], which differ in
the way they build an internal model of the objective

function. For further details the reader is referred to
[1,5]; a comparison of different direct methods in the
industrial context can be found in [6].

Of the three scenarios that we have in mind, the last is
the most advanced. Here many of the optimizers
implementing these algorithms will require additional
features to allow sharing of results produced by the

previous optimization run(s), which is vital for efficiency
when considering expensive black-box functions.

2. The BBO project

We started developing a proof-of-concept software

tool in 2002, called ‘Black-Box-Optimizer’ (BBO). Since

this paper leaves little room to describe all technical
details, the reader is referred to [7,8] for further details

about the BBO project.
Figure 2 illustrates the architecture of the BBO tool: a

central manager module receives an optimization

request, i.e. an optimization problem plus resource
constraints and solution requirements. The scheduler
uses static classification information and a knowledge

base, and possibily existing dynamic classification
information, in order to produce a script (a schedule)
that can be executed by the manager.
Note that the grey boxes contain all the functionality

that is currently performed by a human optimizer using
standard optimization modeling and solving environ-
ments (the white boxes).

In the following we briefly describe the functionality
of the individual modules as seen in Fig. 2 and give some
details regarding their implementation.

2.1. Classification module

Classification is the determination of properties of an
object. These properties are then used to reason about

the next action to be taken. Here we need to classify
three kinds of objects: problem descriptions, optimizers,
and status information of optimization runs.
Problem descriptions are usually classified using

symbolic algebra tools, such as Mathematica or Maple.
These tools can determine properties like ‘linear’ or
‘non-linear’. However, the user can also supply classifi-

cation information as annotation to the problem

Fig. 1. The optimization process.

A. Junghanns et al. / Third MIT Conference on Computational Fluid and Solid Mechanics1260

description. This will short-cut the call to the classifi-

cation algorithm determining this property.
Properties of the optimization methods are currently

supplied by the user implementing the BBO optimizer

APIs. Future optimizer APIs should incorporate inquiry
features that allow determination of important proper-
ties automatically.

2.2. Scheduling module

Scheduling is matching a specific situation to a specific
set of actions. For example, after analyzing an optimi-

zation problem description, one can use the properties of
the problem to determine which optimization method to
use.

Coarse and heuristic scheduling
When scheduling an optimization problem, the first

task is to determine the class of optimization problem,

e.g. is the problem continously linear or nonlinear con-
strained? We call this step ‘coarse scheduling’. Coarse
scheduling will then establish a set of feasible optimizers
– those that are able to solve problems of the given class

under the resource constraints and solution require-
ments given in the optimization request.
It is the task of ‘heuristic scheduling’ to determine the

‘best’ method among the set of feasible optimizers and
its appropriate parameter settings. The term ‘heuristic’
was chosen due to the nature of the knowledge that is

necessary for this step.

Static and dynamic scheduling

We consider an orthogonal split among the schedul-
ing tasks depending on whether it considers information
gathered from optimizer status messages or not. While

‘static scheduling’ relies solely on what can be deter-
mined before an optimization is started, ‘dynamic
scheduling’ uses performance feedback from the opti-

mization process in order to adapt algorithm parameters
or even switch optimization methods.

2.3. Current status of the BBO project

Currently, the BBO tool can read optimization pro-
blems defined in XML or OL. OL is a superset of AMPL
[9] where we added scripting ability to

. control the optimization procedure;

. model algorithm in- and output, and

. to include runtime state and meta information.

BBO comes with an extensive test framework, is con-
nected to NEOS [10] to make the NEOS optimization
methods available, has access to internal optimization
algorithms, e.g. the Nelder-Mead Simplex Method [11],

uses PROTÉGÉ [12] as a knowledge base, ALGER-
NON-J [13] for reasoning capabilies, and Mathematica
to answer classification requests using symbolic algebra.

The central scheduling component analyzes incoming
optimization requests and produces a solution strategy
in the form of an OL script. The script contains the

optimizer selection and setup. BBO is currently using a
number of classifiers:

Fig. 2. Architecture of the BBO tool.

A. Junghanns et al. / Third MIT Conference on Computational Fluid and Solid Mechanics 1261

. For the objective and each constraint it analyses the
contained variables, if external method calls exist, its

‘complexity’, if there are explicit discontinuities, if
differentiable, if linear, if derivable, and the sparsity
pattern.

. For constraints it checks equality or inequality and
total number of constraints.

. Finally, for decision variables it analyzes the total

number of variables, simple bound preprocessing,
tighter upper and lower bound, and if a variable is
fixed, bound, or free.

Coarse scheduling

Coarse scheduling is currently able to determine the
following optimization problem classes:
. (continuous) linear programming;
. mixed integer programming, either linearly con-

strained, nonlinearly constrained, or completely
nonlinear;

. nonlinear optimization, either unconstrained, bound

constrained, nonlinearly constrained, or completely
nonlinear;

. (nonlinear) complementarity problems; and

. global optimization.

3. First numerical results

The non-trivial part of scheduling is, not surprisingly,
the heuristic scheduling. We are using the COPS test set
[14,15], a collection of large-scale Constrained Optimi-

zation ProblemS, to test BBO’s scheduling algorithms
for the class of nonlinear constrained problems. It con-
sists of 17 different AMPL models and 3 data sets, which

come from fluid dynamics, population dynamics, opti-
mal design, mesh smoothing, and optimal control.

The knowledge base of BBO currently contains about
50 facts and rules. An optimization method without

heuristic scheduling adds 2 to 4 facts to the knowledge
base, Nonlinear Constraint Optimization (NCO) NEOS
methods supporting heuristic scheduling add close to 10

facts.
We compare BBO’s choice of optimization method to

random selections. For this purpose we use the runtime

results from [14] for 3 NCO NEOS optimizers that
perform best on at least one problem (LOQO, MINOS,
and KNITRO); using BBO’s NEOS optimizers would
have introduced uncontrollable network latencies. We

evaluated our scheduler on those 10 problem instances
that had the largest runtime difference between best and
worst of the selected method.

The second column of Table 1 shows which optimizer
the scheduler recommends to use respectively not to use
if the optimizer’s name is prefixed with an exclamation

mark. The BBO knowledge base reports executed rules
as justification for its results. In this particular case, only
three rules are responsible (discriminating) for the rela-

tive evaluation:
. LOQO slows down when many free variables exist.
. KNITRO slows down when many bounds exist.
. MINOS slows down when nonlinear functions are

expensive to evaluate.
Columns three to five list the free variable ratio nF/n, the
bound constraint ratio mB/m and the asymptotic eva-

luation costs c for each problem. These properties are
the conditions for the three rules above.
Column six contains the average solving time over all

three optimization methods as measure for the perfor-
mance a naive user without BBO scheduling could
expect. Column seven lists BBO’s solving time, which is
either the time of the recommended method or the

average of the two methods that have not been excluded.

Table 1

BBO COPS schedule. The last column is the BBO time divided by the average time

Problem Schedule nF/n

%

mB/m

%

c Avg. BBO Ratio

%

Steering !LOQO 79.8 20.2 O(1) 668.11 2.17 0.3

Robot MINOS 33.3 50.0 O(1) 669.12 6.38 1.0

Rocket !KNITRO 0.0 57.2 O(1) 669.72 1000.78 149.4

Minsurf LOQO 0.0 100.0 O(n2) 693.93 3.99 0.6

Torsion LOQO 0.0 100.0 O(n2) 106.60 1.02 1.0

Bearing LOQO 0.0 100.0 O(n2) 59.59 0.85 1.4

Chain !LOQO 100.0 0.0 O(1) 2.84 4.08 143.5

Glider MINOS 39.7 42.9 O(1) 1377.48 2000.00 145.2

Elec KNITRO 100.0 0.0 O(n2) 4.34 0.54 12.4

Polygon !MINOS 0.0 7.1 O(n) 7.13 7.90 110.7

4258.86 3027.7 56.6

A. Junghanns et al. / Third MIT Conference on Computational Fluid and Solid Mechanics1262

Considering the simplicity of the rules, runtime savings
of over 25% (3000 instead of 4250 seconds) are

encouraging results.
The reader should keep in mind that BBO already

found the correct problem class. This is non-trivial for a

typical engineer – even if, or maybe because, the pro-
blem description was self-created. BBO also handles
much of the logistics: how to access the optimizer, how

to send the data in the correct format, and how to set
which parameter. We believe this to be a big step
towards our ultimate goal of automated optimization.

4. Summary and future research

We showed that automated optimization is possible in
principle and pointed out areas of further work and
research. We identified optimization knowledge as one

of the primary bottlenecks for scheduling quality. Fur-
thermore, connecting optimization methods to our
environment is a time consuming task, here improve-

ments of the optimizer APIs could help reduce this
obstacle. The next step of the project will be to integrate
dynamic scheduling capabilities in order to e.g. optimize
expensive black-box cost functions efficiently. Finally,

we need to extend and fine tune the entire scheduling
module: the classification and the knowledge base. We
are convinced that our efforts will lead to an easier

access to optimization, thus assisting engineers to
improve their designs in an automated manner, and
enabling the automatic generation and solution of

optimization problems from knowledge bases.

References

[1] Kolda TG, Lewis RM, Torczon V. Optimization by direct

search: new perspectives on some classical and modern

methods. SIAM Rev 2003;45:3:385–482.

[2] Jones DR, Schonlau M, Welch WJ. Efficient global opti-

mization of expensive black box function. J Global

Optimization, 1998;13:455–492.

[3] Powell MJD. On the use of quadratic models in uncon-

strained minimization. Technical report, Department of

Applied Mathematics and Theoretical Physics, University

of Cambridge, 2003.

[4] Colson B, Toint Ph.L. A derivative-free algorithm for

sparse unconstrained optimization problems. In: AH

Siddiqi and M. Kocvara, editors, Trends in Industrial and

Applied Mathematics. Dordrecht: Kluwer Academic

Publishers, 2002, pp. 131–147.

[5] Bockholt M. Optimization methods for expensive com-

puter simulations. Master’s thesis, TU Braunschweig,

2004.

[6] Booker AJ, Dennis JE, Jr, Frank PD, Serafini DB,

Torczon V. Optimization using surrogate objectives on a

helicopter test example. In: J Borggard et al., editors,

Computational methods for optimal design and control.

Proceedings of the 2nd AFOSR Workshop on Optimal

Design and Control. Arlington, VA, 30 September–3

October, 1997. Boston: Birkhäuser. Prog Syst Control

Theory 1998;24:49–58.

[7] Petzoldt D. Design and implementation of a software

system for automated optimization. Master’s thesis,

Technische Universität Berlin, 2004.

[8] Dageförde J. Design and validation of an open and

modular architecture for mathematical optimization in

industrial engineering. Master’s thesis, Christian-

Albrechts-Universität zu Kiel, 2004.

[9] AMPL: A mathematical programming language. http://

www.ampl.com

[10] Neos server for optimization. www-neos.mcs.anl.gov/

neos/

[11] Nelder JA, Mead R. A simplex method for function

minimization. Comput J 1965;7:308–313.

[12] The protege ontology editor and knowledge acquisition

system. http:// protege.stanford.edu/

[13] Algernon-j: Rule-based programming. http://algernon-j.

sourceforge.net

[14] Dolan ED, Mor JJ, Munson TS. Benchmarking optimi-

zation software with cops 3.0. Technical Report ANL/

MCS-TM-273, Argonne National Laboratory, 9700 South

Cass Avenue Argonne, Illinois 60439, February 2004.

[15] Cops: Large-scale optimization problems. http://www-

unix.mcs.anl.gov/ �more/cops/

A. Junghanns et al. / Third MIT Conference on Computational Fluid and Solid Mechanics 1263

