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Abstract

A novel geometry modeling technique is defined for the optimization of pressure recovery through a two-dimensional
subsonic diffuser based on that of an F1 race car airbox. The airbox design procedure involves considering the

expansion of the air entering the airbox coupled with a bend through 908, both of which are discussed separately before
uniting the two in a final optimization study. The geometry modeling technique discussed allows for potentially radical
designs with high pressure recoveries.
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1. Introduction

Engine air intake design is an important process

within both the automotive and aerospace industries.
When designing such intakes, the aim for the internal
flow is to ensure that the engine can be provided with as

great an increase of static pressure at the engine face as
possible.

For this reason, diffusers are commonly used to pro-

vide an efficient reduction in flow velocity to convert a
large fraction of the dynamic pressure at diffuser entry,
into static pressure at its exit, i.e. at the engine face.

The engine airbox on an F1 race car is an interesting
challenge as it requires both a large expansion and a turn
of the flow through 908 within a very short distance,
prescribed by the engine layout configuration and roll

structure specifications.
Currently, F1 teams use a configuration which places

a 3-litre V10 engine behind the driver (see Fig. 1) with

the airbox positioned inside the roll-bar thus taking
advantage of the ramming effects of the oncoming air at
high speeds. An increase in the static pressure available

to the flow into the engine on its intake stroke increases
the cylinder charge density and hence engine power.

In F1 cars, the exit of the diffuser sits over an offset

array of ten intake trumpets. Because of this, uniformity
of pressure here is also important.

In this study, we have initially considered the two
main features of the diffuser separately: that of

expanding the flow and that of turning the flow. Much
research has been carried out for the case of straight,
two-dimensional diffusers. Practical experimentation has

been used to classify the major flow regimes within these
diffusers [1,2]. Relations between the flow regimes and
the geometry were discovered by Reneau et al. [3] and, at

the same time, studies into the manipulation of the wall
geometry to create more efficient designs were investi-
gated [4].

Here, we first find a suitable method for para-
meterizing the geometry of a diffuser with no bend,
followed by a bend with no expansion. The expansion

and bend are then fused together and an optimization
procedure employed to develop the design further.

2. Objective

Our objective is maximizing pressure recovery solely
from the internal flow. In this case we assume steady,
one-dimensional, incompressible inlet flow so that the

pressure recovery, Cp, may be defined as

Cp ¼
pe � pu

qu
ð1Þ

where pe and pu are the mass-averaged static pressure
values at the exit and upstream locations, respectively,
and

qu ¼
1
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denotes the dynamic pressure, � being the density and U

the mass-averaged inlet velocity.

3. Geometry parameterization

3.1. Straight diffuser

Early work on wall contouring for a straight two-
dimensional diffuser [4] was based on a wall geometry
defined by just one parameter. A bell-shaped optimal

wall contour was found. Madsen et al. [5] brought in the
use of CFD and modern optimizer codes using a B-
spline parameterization with five master points along the

wall.
For our F1 case, however, the expansion ratio is much

larger combined with a shorter diffuser length than those

tested by Carlson et al. or Madsen et al. Consequently,
three different geometric parameterizations of the wall
were tested here to obtain an idea as to how the flow
responds in these conditions and how much local wall

control is possible. First, a set of four cubic splines
joined together to form one piece-wise cubic spline
passing through five points with five design variables.

Point one is fixed at the entry position, point two has its

x and y coordinates variable, point three has its x
coordinate fixed at half the centerline length and its y

coordinate variable, point four has both its x and y
coordinates variable and point five is fixed at the exit
position. Second, a single Hicks–Henne bump function

[6,7] with three design variables, namely, amplitude, x
location of bump and bump width. And finally, a double
Hicks–Henne bump function with six design variables.

3.2. An elbow turning through 908

Two parameterizations were tested for modeling the

centerline of the diffuser using a constant width duct
which turns through 908. One method employed piece-
wise splines passing through three points along the

centerline and the second a Bezier curve with three
control points.

3.3. The airbox design

Methods from the preceding two sections were next

fused together to create a two-dimensional airbox
model. Hence, our model was split into three separate
uncoupled sections; the centerline bend, the upper wall,
and the lower wall. This decoupling maximizes the

amount of local control given to the optimizer and
allows the production of potentially radical results.
The initial upper wall shape was taken as the optimum

shape from the straight diffuser study. The centerline
was then bent round according to the best results from
the turning elbow study with the three control points

defining the bend by CP1(x,y), CP2(x,y) and CP3(x,y),
see Fig. 2. The equivalent x values of the straight diffuser
on the upper wall were measured as a ratio along the

centerline with the equivalent y values (ru1, ru2, ru3)
measured normal to the centerline. With the same
method, the lower wall would tend to fold in on itself
and gain loops. To avoid this, we used the angles �1, �2

Fig. 2. Geometry parameterization of airbox.

Fig. 1. Airbox positioning within the F1 car.
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and �3, with �2 fixed at 458, to obtain lines intersecting
with the centerline. The distances rl1, rl2 and rl3 could be

then measured along these lines.

4. CFD analysis and optimization study

The characteristic strategy when considering an opti-
mization loop is outlined in the steps below:
(1) Specify a parametric geometry.
(2) Construct inputs using a Design of Experiments

(DoE) approach.
(3) Run CFD simulations.
(4) Build a response surface model (RSM).

(5) Evaluate RSM. If modifications are necessary,
repeat steps (4) and (5).

(6) Population and gradient-based search methods using

RSM.
(7) Further CFD evaluations.
(8) OK? If more update design points are necessary,

repeat steps (4) to (7).
(9) Result: optimum design.

Our geometry is built using a CAD engine and then
imported into a meshing tool. Before optimization, an

appropriate mesh resolution was found for sufficient
accuracy and convergence of the solution in FLUENT.
With a fixed mass flow rate at the inlet, equivalent to a

velocity of approximately 70 m/s, a paved quad struc-
ture of a 30K cell mesh was chosen.

An initial 25 point DoE search using an LP� method

was implemented for each optimization process.
Sequential update points are then added to build up the
RSM apropos achieving an optimum pressure recovery
between the exit and the entry. This response surface is

built by optimizing the expected improvement available
due to a kriging process using the OPTIONS Design
Exploration System [8]. This particular loop is pre-

ferential to avoid the points becoming trapped in a local
maximum of the response surface. For further details on
efficient optimization processes, see Jones [9].

The CFD evaluations were carried out via two-

dimensional steady Reynolds-averaged Navier–Stokes
equations employing the standard k-� turbulence model.

Following the initial DoE search, 75 update points
were sequentially added to the response surface to
obtain the optimum design.

5. Results

5.1. Straight diffuser

In this case the optimum shapes from all three para-
meterizations were not bell-shaped. If the air was

expanded quickly at the start of the diffuser, at our set
speed, the boundary layer was not sufficiently energized
to remain attached. Interestingly, all three optima

showed a geometry converging slightly at the inlet and
expanding linearly after that, as can be seen in Fig. 3.
The slight convergence accelerates the flow sufficiently to

increase the turbulence of the flow which, in turn,
increases the turbulence of the boundary layer hence
preventing the onset of separation. This convergent–
divergent diffuser returns a slightly higher pressure

recovery than that of the straight wall. Additionally, the
pressure distortion over the exit for the optimum design
is reduced.

5.2. An elbow turning through 908

This study demonstrated that piecewise splines pro-
vide slightly more local control along the bend than the

Bezier curve. This is primarily due to the Bezier curve
requiring extra control points positioned at either end to
ensure tangency conditions.

5.3. The airbox design

Even with a relatively large number of design vari-
ables, the optimization process worked well and its
development is plotted in Fig. 4. Design points which

returned a pressure recovery lower than Cp = 0.65 were

Fig. 3. Streamlines illustrating the flow field in a straight wall (left) and optimum wall (right) diffuser.
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trimmed off the figure. The bold line indicates the cur-
rent best optimum as each update point was added. Our

optimum design can be seen in Fig. 5. Interestingly, a
large bulb has formed along the upper wall and a smaller
bulb can be seen on the lower wall. Both have the effect

of catching the bubble of separated flow allowing the
main core of the flow to follow a path akin to the shape
of a more intuitively shaped diffuser.

6. Conclusion

We have observed that by uncoupling the walls and
centerline of a curved diffuser we can produce radical
results. The resulting geometry has an extended bulb on

the rear of the diffuser and a smaller bulb on the lower

front wall. By capturing and containing the separation
bubbles occurring in the airbox within these bulbs we

can obtain a high pressure recovery and allow a uniform
pressure distribution over the filter.
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