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Abstract

An augmented genetic algorithm with artificial neural network is introduced as a new aerodynamic design and

optimization technique. With the purpose of getting a faster algorithm, a neural network and a real coded genetic
algorithm are hybridized in a new way. In this way, instead of predicting the computational fluid dynamics calculation
of a candidate airfoil, a properly trained neural network is used for predicting the candidate itself. At each step of the

genetic process, using the target pressure distribution as an input to the trained neural network produces an airfoil that
is a candidate solution of the inverse design problem. The proposed algorithm is tested for the inverse airfoil design
problem in the transonic flow case. The results indicate that the computational efficiency of the implemented algorithm

is tremendously high.
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1. Introduction

In aerodynamic shape optimization problems, in spite
of their robustness, the main disadvantage of genetic
algorithms (GAs) is that they require too many com-

putational fluid dynamics (CFD) calculations. That is,
using GAs is very time consuming. Generally, there are
four ways of accelerating and improving the perfor-

mance of GAs for aerodynamic shape optimization
problems [1]: the use of improved genetic operators; the
use of multiprocessing; hybridizing GAs with a numer-

ical optimization method; and reducing the number of
calls to the costly direct solver by using inexact evalua-
tions (e.g. using an artificial neural network (ANN) for a

certain number of evaluations).
In the last way above, the ANN is used for CFD

calculation rather than a costly direct CFD solver. A
trained ANN evaluates the aerodynamic performances

of some of the aerodynamic shapes in the population
during the GA process (a direct CFD solver is used for
the remaining aerodynamic shapes in the population). In

this manner, the amount of direct CFD solver usage is
reduced, and consequently the time consumption of
GAs can decrease considerably. To apply this technique,

the ANN is trained by using the aerodynamic shapes as

the input and their aerodynamic performances as the
output. The success of this technique depends on the
accuracy of the inexact CFD calculations of the ANN.
Additionally, the main characteristic of getting the

desired solution depends only on the power of GAs in
searching the design space, since the individuals (new
candidate solutions) in the new population are produced

only by reproduction operations (such as mutation and
crossover) at each step of the GA process.
For aerodynamic shape optimization problems, a new

way of improving the performance of GAs is suggested
in this work. In this way, a new technique of using
ANNs and GAs in a hybrid manner is proposed. Instead

of inexact CFD evaluations (predicting CFD calcula-
tion), the ANN is used to predict a candidate for the
desired airfoil at each step of the GA process. This
predicted airfoil is added to the new population pro-

duced in the genetic manner, so that it can be used at the
next step of the GA process. In this case, in addition to
GAs, the ANNs also affect the solution procedure

because one of the candidate solutions in the new
population is produced by the ANN at each step of the
GA process. However, this time, the ANN does not need

to be accurate in predicting the candidate, since the GA
process can explore more fitted individuals from a less
fitted candidate, and it can also eliminate defective

*Tel.: +90 (544) 455 0593; Fax: +90 (212) 662 8554; E-mail:

hacioglu@hho.edu.tr

1250

# 2005 Elsevier Ltd. All rights reserved.

Computational Fluid and Solid Mechanics 2005

K.J. Bathe (Editor)



candidates through the selection phase. This new algo-
rithm is called the Augmented Genetic Algorithm with

Neural Network (AGANN), and its computational
efficiency is tremendously high for airfoil optimization.
The GA method used in this work is the Vibrational

Genetic Algorithm (VGA), detailed in [2] and [3].

2. Augmentation procedure of genetic algorithm with

neural network

In the AGANN, the ANN is used for predicting a
candidate airfoil at each step of the GA process. The
airfoil geometries and their fitness values (or pressure
coefficient, Cp, distributions) in the population at the

current step of the GA process are used for training the
ANN. The trained ANN produces an airfoil at each step
using the target fitness value (or using target Cp dis-

tribution) as an input. During the initial stages of the
GA process, the response surface obtained from the
ANN is not enough to get the desired solution, because

the population (the set of training data for the ANN) is
probably far from the target. For that reason, the ANN
produces an erroneous candidate for the desired airfoil
in the initial stages. However, this candidate may be

more fitted than the best one produced by the GA
process. In this case, the candidate produced by the
ANN makes the GA process faster in exploring more

fitted individuals. That is, even if the ANN does not
produce the desired candidate, it may reinforce the
population with a more fitted individual during the GA

process. On the other hand, when the GA process con-
tinues and the population (the set of training data for
the ANN) is getting close to the target, the ANN can

produce less erroneous candidates. Briefly, while the
ANN reinforces the GA population with a more fitted
candidate, the GA can produce a more fitted population
by using this candidate, and the more fitted population

(set of training data) ensures that the ANN can produce
a better prediction. Consequently, this positive interac-
tion makes the genetic process very fast and the desired

solution can be obtained quickly.
The main steps of the AGANN are as follows:

1. CFD calculations of the airfoils in the current

population are performed to get their fitness values.
The selection operation in the current step of the GA
process is carried out by using these fitness values,

and the other GA operations are performed to get
the new population.

2. The ANN is trained by using the airfoil geometries
in the current population and their fitness values.

For this training, the fitness values of the airfoils are
used as the input and the corresponding airfoil
geometries are used as the output.

3. The target fitness value is used as an input to get the

corresponding airfoil geometry from the trained
ANN. This corresponding airfoil is placed in the new

population produced by the GA operations, so that
it is used as a candidate at the next step of the GA
process.

This procedure is repeated at each step of the GA pro-
cess. The GA process continues until the desired
solution is obtained.

The ANN model used in this work is a back-propa-
gation neural network (BPNN) [4]. One non-linear
hidden layer with sigmoid (hyperbolic tangent) transfer
function and a linear output layer are used in the BPNN.

Figure 1 shows the architecture of this BPNN. As

mentioned above, in one set of training data, the input
parameters are the fitness values of the airfoils in the
population, and the output parameters are the airfoil

geometries. The training of the ANN is continued for
each step of the GA process, by using the airfoils in the
current population and their fitness values. The weights

of ANN obtained from one set of training data are
saved and are used as initial values to train the next set
of data. This reduces the ANN training errors for a fixed
amount of training epochs and enables a more com-

prehensive construction of the response surface for the
search space.

3. Experiments and results

Experiments were performed for the RAE2822 airfoil.

Fig. 1. Architecture of back propagation neural network

(BPNN).
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Surface pressure coefficient distribution, Cp, of the
RAE2822 airfoil at 28 angle of attack and M = 0.725
are given. A full potential flow solver with 161 � 31 O-
mesh was used for transonic, inviscid flow. We started

from the NACA0012 to reach the desired airfoil. The
thickness ratio of NACA0012 was changed �30% uni-
formly in the initial population. For the Bezier

representations of the airfoil surface, 13 control points
were used, always keeping two of them constant.

The results obtained in transonic conditions for the

profile RAE2822 are shown in Fig. 2. The line of best
fitness value of AGANN is an almost vertical straight
line. To obtain a fitness value of 70000 for the GA and

AGANN, 10320 and 195 CFD calculations are needed
respectively. Comparing these results indicates that the
reduction in CFD calculations for AGANN with respect
to GA is 98%.

The target profiles, optimized by inverse design, and
their pressure coefficients are shown in Figs 3 and 4. It
can be seen from Figs 3 and 4 that the proposed algo-

rithm has done a good job in carrying out the inverse
design problem.

4. Conclusions

The numerical experiments indicate that the suggested
algorithm, AGANN, has a great impact on the reduc-

tion in the number of CFD calculations needed for
inverse airfoil design in transonic flow conditions.
Instead of inexact CFD evaluation, using an ANN for

predicting an airfoil (candidate solution of the target
pressure distribution) causes a positive interaction
between the ANN and GA as explained in Section 2.

Consequently, the GA gains great exploration power,
since the ANN usually supports the population with the
desired solution after only a few generations.

References

[1] Giannakoglou KC. Acceleration GAs using ANN – the-

oretical background. GAs for Optimization in

Aeronautics and Turbomachinery, von Karman Institute

for Fluid Dynamics, Lecture Series 2000–07.
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Fig. 2. Iteration history for the experiment.

Fig. 4. Calculated and target Cp distributions.Fig. 3. Calculated and target airfoils.
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