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Abstract

The purpose of the studies presented here was to establish a standard optimization strategy for crash and NVH (i.e.

noise, vibration, and harshness) problems. Crash simulation is a CPU consuming task, the optimization for this type of
problems requires efficient strategies. The approaches should be rather general, which is inevitable for their integration
into the standard design process. Monte-Carlo-search strategies, evolutionary and genetic algorithms, kriging, simu-

lated annealing, and some methods based on regression analysis were tested. Mono- and multi-criteria optimization
problems were considered. Finally, a standard strategy for optimizing is proposed and tested on a real MDO problem
with five crash load cases, statics and dynamics with a finite element model of about 800,000 elements.
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1. Introduction

Recently, special focus was laid in the automotive
industry on the simultaneous optimization of crash-
worthiness, dynamic, and static functionality of car

bodies, e.g. [1,2,3,4,5]. Several test cases of crash-
worthiness were accounted for and several load cases in
static and dynamic analysis were considered. These

sometimes called multi-disciplinary optimization
(MDO) problems were mostly solved by stochastic
optimization strategies because of their inherent non-

linearity. In general, gradient-based methods are not
adequate for this type of problem because parallel
computing for crash simulation does not deliver correct

gradient data due to numerical noise originating from
parallel computing. Nevertheless, stochastic optimiza-
tion requires a large number of simulations. Thus,
effectivity is crucial for the algorithms. In the literature,

several types of algorithms were already discussed, e.g.
Monte-Carlo-search strategies, response surface meth-
odology, evolutionary computing strategies, kriging,

and space mapping. The methods based on meta mode-
ling are advantageous as long as the meta models can
represent the real physical problem. As some studies

have shown in the preliminary stages of the negotiations

presented here, this is valid only for some of the crash
load cases. In particular, the highly non-linear character
of the frontal impact is difficult to be approximated by
simple meta models.

1.1. Four benchmarks for crash and NVH optimization

In this paper, the results of the evaluation of optimi-
zation algorithms effectuated at the research center of

BMW in Munich are presented. Four particular exam-
ples for benchmarking the algorithms were defined. As a
first test case, a really multi-disciplinary example of a

full car frontal impact together with linear analysis of
statics and dynamics was defined. This size optimization
problem had 63 independent parameters (sheet thick-

nesses) and was initially infeasible. Secondly, a side
impact problem with 10 independent variables was
considered, where special focus was laid on multi-cri-

teria optimization. As a third example, a model was
taken with an industrial model size (137 independent
parameters) for which the NVH (noise, vibration, and
harshness) functionalities were optimized. Finally, the

examples were accomplished by a shape optimization
problem. The first three benchmarks are depicted in Fig.
1. The shape optimization example is presented in an

additional paper, cf. [6].
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1.2. Validation for a real full car multi-disciplinary
optimization

As a final validation example, a vehicle from the
actual design process was chosen. The model taken for

optimization consists of about 800,000 elements. Frontal
impact, side impact, and rear impact were regarded as
well as two low speed assurance cases. The computation
time on 8 processors varied between 5 and 10 hours. In

addition, statics and dynamics were computed. In all
load cases, several constraints, e.g. intrusion, fre-
quencies, and rigidities, were defined.

1.3. Optimization algorithms

For all four benchmark examples, several optimiza-

tion algorithms with several parameter constellations
were tested. Evolutionary algorithms, genetic algo-
rithms, simulated annealing, and a kriging method
combined with an evolutionary strategy were chosen, cf.

for example [7]. The aim of this study was not to find the
optimum after an infinite number of computations but
to find sufficient improvement in a certain time, which is

realizable in standard car design processes. Thus, the
number of allowed variants per optimization was limited
to a few hundred. Computations of crashworthiness are

CPU devouring tasks; heuristic studies for optimization,
sensitivity or robustness analysis demand even more
resources. For the algorithms, it is hence required that
they rapidly find a feasible area and that they advance

there sufficiently fast. The final convergence is of no real
importance. The strategy has to be robust and fault-
tolerant because in the industrial context some network

failures occur as well as hardware errors, which should
not render the optimization result questionable. Special
checking and monitoring facilities were realized in the

framework of the benchmarks presented here.

2. Benchmark 1 – MDO

2.1. Crash and NVH simulations

For the first benchmark example, a frontal impact

offset crash (Euro-NCAP) with an impact velocity of
64 km/h was defined. The finite element model consists
of ca. 150,000 elements. For computation, up to four

hours were needed. This small example was chosen to
enable multiple repeated optimizations. A larger exam-
ple would have limited the number of repeated
optimizations to a very low number leading to non-sig-

nificant comparisons between the algorithms. The
frontal impact is highly non-linear; a first test with meta
modeling showed that finding a valid approximation is

not evident in this case. Thus, pure stochastic algorithms
were tested in this example and no regression models,
response surface models or comparable approaches were

applied. The computation time of the linear analysis for
statics and dynamics is negligible with respect to that for
the crash analysis. A total NASTRAN computation for

one of these load cases actually takes about 10–30
minutes. Particular attention should be paid to the
mode-tracking algorithm (an algorithm which identifies
eigen modes of new designs on the basis of eigen forms

of the initial design), which may fail when the original
design is altered too strongly.

2.2. Optimization

The car design process limits the time available for

optimization to maximal two weeks, cf. [8]. In most
cases, the time window open for the changes taken from
an optimization is even smaller. Thus, a strategy is

required which can give the intermediate status and
which is flexible enough to be adapted to the process
requirements. For the studies presented here, the total
number of variants was hence limited to 280. The

objective of this MDO example was to minimize the
mass while respecting additional boundary conditions
on footwell intrusion, A-pillar displacement, dynamic

frequencies, and static stiffnesses. The original design –
already pre-optimized during the standard design pro-
cess – was nevertheless infeasible; the boundary

conditions of the frontal impact were violated slightly.

2.3. Performance

The results of the optimizations obtained by the dif-
ferent algorithms are given in Table 1. Here, the mean
amelioration was evaluated over several optimizations.

The performance is highly dependent on the particular
tuning of the algorithms. The results are obtained after
evaluating the best configurations of the particular

approach. In total, it can be stated that for problems

Fig. 1. Three of the four benchmark examples.
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similar to benchmark no. 1 evolutionary algorithms
perform best. Monte-Carlo-search strategies can be
regarded as the simplest evolutionary algorithms with-

out adaptivity. Thus they perform quite well. If a higher
number of variants can be generated, the advantage of
the evolutionary algorithm with respect to the Monte-

Carlo-search becomes more and more visible.

3. Benchmark 2 – substructure for side-impact analysis

3.1. Mono- and multi-criteria optimizations

For the second benchmark, a submodel was chosen
with about 340,000 elements. Design parameters are the
thicknesses of the parts in the B-pillar. The mono-cri-

teria optimization led to results similar to the first
benchmark. For multi-criteria optimization (two objec-
tives: mass and lateral displacement of the structure), the

evolutionary algorithm, which performed best in the
mono-criteria examples, was tested against a meta
modeling strategy based on regression analysis. The

physics of the side impact is more straightforward than
that of the frontal impact. Thus, the meta modeling was
successful and performed better than the evolutionary
optimization. Both succeeded in establishing a Pareto-

front.

4. Benchmark 3 – NVH simulation

4.1 Full car FE-model

This benchmark was defined to test the optimization
algorithms for a standard full car FE-model for NVH

analysis. An additional goal was to check the mode-
tracking procedure which finally failed in about 1.5% of
all computations. The mode-tracking was based on an
MAC value (modal assurance criterion) comparison.

Here, constraints with respect to the first three eigen
modes of the structure and static bending and torsion
forms were imposed; the objective was to minimize the

mass.

4.2 Optimization

The optimization results are comparable to those of
Section 2. Mono- and multi-criteria optimizations were
effectuated. Genetic algorithms, simulated annealing,

and kriging performed poorly compared to response
surface and evolutionary strategies.

5. Full MDO validation example

The benchmarks have indicated that an evolutionary

algorithm performs best for the type of problems dis-
cussed here. Thus, an optimization problem (cf. Fig. 2)
with five crash load cases, statics and dynamics with a

finite element model of about 800,000 elements is solved
in a real industrial context. Figure 3 gives the result in
comparison to the performance of a simple Monte-Carlo

search. It can clearly be stated that the evolutionary
algorithm is by far more effective. In the predefined time
frame of 12 days the evolutionary optimization reduced

the mass of the model by about 13.5 kg while the Monte-
Carlo approach came to a reduction of 11.6 kg. The

Table 1

Results for the first benchmark (MDO)

Algorithm Mean amelioration

Monte-Carlo-search �m = � 14.6 kg

Kriging �m = �9.3 kg
Simulated annealing �m = �10.1 kg
Genetic algorithms �m = �12.2 kg
Evolutionary algorithms �m = �15.5 kg

Fig. 3. Performance of the Monte-Carlo-search strategy and

the evolutionary algorithm for the large MDO example.

Fig. 2. Large MDO – example for crash and NVH.
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optimization has been stopped not because the algo-
rithm had converged to an optimum but because of the

time limit defined by the goal to introduce the results
into the real production development process.

6. Conclusions

The four benchmarks defined for testing optimization
algorithms with respect to their usability in a real
industrial context for optimization of crashworthiness
and NVH-performance have clearly shown that evolu-

tionary algorithms perform best. They lead to a rapid,
controlled, and repeatable amelioration of the design.
Crucial for this is the insertion of the initial engineering

knowledge of the model. In general, the initial design is
already pre-optimized before an automatic optimization
is started. Thus, the algorithm should generate a suffi-

cient number of variants around the initial design to
ensure that the information is not lost during
optimization.
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