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Abstract

Proper-orthogonal-decomposition (POD) methods have recently been developed for the design of airframe com-
ponents. In this paper, two POD-based approaches have been studied: the gappy POD reconstruction procedure [1],

and the gradient approach [2]. Both methods do not require a projection onto the computational fluid dynamics (CFD)
governing equations but are, instead, a collection of flow snapshots that covers the parameter ranges of interest. Their
performance on the inverse design of airfoil shapes have been compared and evaluated. Our studies show that while

both methods are efficient and accurate, once appropriate flow snapshots have been collected, the gradient-based
method is generally more accurate.
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1. Introduction

Aerodynamic shape optimization is receiving atten-

tion in the aerospace industry as a useful tool for the
design of airframe components. The analysis usually
involves a gradient-based optimizer and an adjoint sol-

ver, which can then be coupled with a computational
fluid dynamics (CFD) solver that provides the required
gradients.
Significant progress has been reported on the appli-

cation of this approach to realistic design of complex
geometries and viscous flows [3]. However, the use of the
adjoint-solver approach for situations involving multiple

disciplines and a large number of design constraints has
been somewhat limited. The fundamental reason for this
might be related to the fact that the adjoint equations,

boundary conditions, and gradient calculation formulae
are cost-function dependent, and therefore need to be re-
derived every time the cost function changes. Moreover,
it is not possible to treat arbitrary forms of the cost

functions. In this work, alternative approaches for
aerodynamic design of wings based on the proper-
orthogonal-decomposition (POD) method have been

evaluated by the application to inverse design of a series
of airfoil shapes.
POD has been used in reduced-order methods for

aeroelasticity-based aircraft design [4]. The work by Bui-
Thanh et al. [1] and LeGresley and Alonso [2] have
demonstrated that the POD method could also be used

for low-cost aerodynamic shape optimization. These
methods do not require a projection onto the governing
equations for CFD, but are instead a collection of flow
snapshots that covers the parameter ranges of interest.

The method proposed by Bui-Thanh et al. [1] was based
on the gappy reconstruction procedure [5], while that
used by LeGresley and Alonso [2] was based on the

gradient approach to cost function optimization. In
both cases, conventional CFD methods were used to
generate the data ensemble (snapshots), from which the

POD process computes a set of optimal eigenfunctions.
The two methods differ in the way the cost function is
evaluated and the optimal solutions are approached. In
the current paper, the effectiveness and the accuracy of

the two methods discussed above are evaluated as
functions of the size of the snapshots, the size of the
reduced POD modes, and the values of the design

variables for geometry optimization.
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2. Inverse design

The POD procedure used here relies on the Karhu-
nen–Loève expansion for the data ensembles which span
a range of airfoil geometries [6]. Once the POD basis

functions,  , have been obtained, we can expand the
flow solution about an arbitrary airfoil shape (�), i.e.

U� �
Xp
j¼1

a�j j ð1Þ

The accuracy of the expansion depends on the scope
of the database and the number of POD eigen-modes

(p,1�p�N). We investigate the effects of these two fac-
tors on the performance of two previously reported
POD-based inverse design procedures which are descri-

bed below, within the framework of airfoil shape design.
Given a target pressure distribution P*, the inverse

design problem is to find an optimal airfoil shape whose
surface pressure distribution P minimizes the cost

function

J ¼ P	 � Pk k2 ð2Þ

In addition to containing the flow variables, the
snapshot in the implemented gappy procedure is aug-

mented to also contain airfoil coordinates. The minimal
solution of a cost function

J ¼ V	 � Vk k2 ð3Þ

is sought, where the new target vector V* contains a

surface pressure distribution P* and the corresponding
airfoil coordinates C*. As the target pressure distribu-
tion P* is known to the designer, the new target vector

V* then contains both known and unknown compo-
nents. Everson and Sirovich [5] reported on
reconstructing the missing (gappy) data by assuming

that

V	 � V ¼
XM
n¼1

�an n ð4Þ

The coefficient �an satisfies

M � �a ¼ f ð5aÞ
Mkn ¼  k;  nð Þs �V½ � ð5bÞ

fk ¼ V;  kð Þs �V�½ ð5cÞ

where the inner product is over the support s[V̂] of V̂.
The vector V̂ is defined as

V̂ðxÞ ¼ mðxÞV	ðxÞ ð6Þ

where m is zero on the missing data, and unity

elsewhere.

In addition to the gappy procedure, we also imple-
mented the gradient optimization approach. For the

latter, the cost function is as defined in Eq. (2), but P is
represented by the POD modes, i.e.

P ¼
X
i

bi i ð7Þ

The coefficients bi are functions of the design variables
which are chosen as the amplitudes of bumps that are
added to the basic airfoil geometries. In the current

work, the bump functions are a series of Hicks–Henne
functions [7]:

bðxÞ ¼ sin 	xlog 0:5= logðt1Þ
h in ot2

; 0 � x � 1 ð8Þ

Gradients of the cost function with respect to the

design variables have also been obtained by finite-dif-
ferencing of the POD coefficients in this paper.

3. Results

The results of our implementation of the gappy POD-
reconstruction procedure is exemplified in Fig. 1, using

the NACA0012 airfoils at Mach number, Ma=0.75,
and attach angle, �=0.75. Various numbers of POD
eigen-modes have been used to reconstruct the pressure

fields. As expected, the larger the number of eigen-
modes used, the more accurate the reconstruction. For
inverse design, the snapshots were generated for RAE

2822 airfoil to which a series of Hicks–Henne bump

Fig. 1. Reconstruction of the pressure field by the gappy POD

method (dashed) compared to the original CFD contours

(solid) (Ma=0.75, �=0.75, with 30 POD modes).
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functions is added. First, 14 bump functions were added
to the basic RAE 2822 airfoil, where seven each were
distributed uniformly on the upper and lower surfaces,
respectively, and are shown in Fig. 2 with dashed lines.

Flow solutions for the original airfoil plus the 14 mod-
ified airfoils are computed using the commercial
software AEROFLO [8], which is a high-order flow

solver for multi-disciplinary aeroelasticity problems.
With the ensemble of the generated flow solutions, the
POD basis with a complete set of modes is generated

and used for the following inverse design problems.

The surface pressure distribution for the Korn airfoil,
whose geometry is also shown in Fig. 2 with solid lines,

is specified as the design target. It can be seen in this
figure that, while the Korn airfoil shares some simila-
rities with the RAE 2822-based snapshot set, its camber

and thickness distributions are quite different. This
example thus represents a challenge for both POD-based
methods. Figure 3 compares the exact Korn airfoil (solid

line), the POD design results using gappy POD method
(long dashed lines), and gradient optimization method
(short dashed lines). It can be seen that the POD design
results are close to those of the target except in a few

regions. Also, the gradient cost-function optimization
POD approach produces better results than the gappy
method. However, on the lower-side trailing region and

the upper-side leading edge region, both methods pro-
duce significant errors relative to the target shape,
implying the need for improved methods.

One approach to improve inverse design is to increase
the richness of the subspace spanned by the POD basis
vectors. This can be achieved by increasing the number

of snapshots in the ensemble. To test this, four more
bumps (t1=0.05, 0.10, 0.20, 0.40 in the Hicks–Henne
functions) have been added on the top part of the RAE
2822 airfoil, and one more bump (t1=0.925) added on

the bottom part. Figure 4 compares the exact Korn
airfoil geometry to the POD design results using the
gappy POD method (long dashed lines) and cost-func-

tion optimization method (short dashed lines) using the
extended snapshot database. Improved results are evi-
dent for both POD methods. Note that the gradient-

based cost function optimization method almost

Fig. 2. Parameterized airfoils based on RAE 2822 (dash) and

the Korn airfoil (solid).

Fig. 3. Inverse design of the Korn airfoil (solid) using the

gappy POD method (long dash) and the gradient-based opti-

mization (short dash). 15 snapshots based on RAE 2822 used.

Fig. 4. Inverse design of the Korn airfoil (solid) using the

gappy POD method (long dash) and the gradient-based opti-

mization (short dash). 20 snapshots based on RAE 2822 used.

X. Cai, F. Ladeinde / Third MIT Conference on Computational Fluid and Solid Mechanics 1229



recovers the target airfoil shape and the surface pressure
distribution (not shown).

4. Conclusions

We have shown that both the gappy POD method and
the gradient-based POD optimization method can be
used for accurate inverse design of airfoil shapes. With

the same ensembles, the gradient-based method shows
more accurate results. These observations are based on
the results for one airfoil shape. Extension to other

interesting airfoils, such as NACA65A004, are being
carried out.
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