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Abstract

This paper is devoted to a method based on computational intelligence for non-destructive defect identification. In
the paper an elastic body with an unknown number of internal defects is considered.

The Evolutionary Algorithm (EA) is combined with the Artificial Neural Network (ANN) into one computational
intelligence system. The EA is applied to identify the number of defects and their parameters by minimizing the fitness
function, which is expressed as a difference between measured and computed displacements on the boundary and a
difference between measured and computed eigenfrequences of the investigated structure. The fitness function is

computed by means of a Fuzzy-Artificial Neural Network (FANN).
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1. Introduction

There are several approaches to identification. One

group of methods is based on sensitivity analysis [1].
This approach is very refined and strict from a mathe-
matical point of view but sometimes it fails because the

minimization of identification functions leads to a local
minimum.
Another group of methods is based on techniques

which try to simulate (or imitate) biological systems.

One approach concerns ANNs [2,3]. In such a method
there is a problem with identifying a large number of
different defects, especially when the number of defects

is unknown. Another very common approach is to use
evolutionary algorithms in identification tasks [4,5]. The
EA enables us to find multiple defects. It can distinguish

different kinds of defects as voids and cracks, and a
number of defects can be considered as a design vari-
able. The EA minimizes the fitness function, which is

formulated as a weighted sum of the difference between
the measured boundary displacements and eigen-
frequences of the examined body and the computed

displacements and eigenfrequences for the numerical
model of the body with an assumed number and shapes
of defects:
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where û(xi) and u(xi) are the measured and computed

displacements at sensor point xi; !̂j and !j are the
measured and computed eigenfrequences of the body; N
is the number of sensor points; M is the number of

eigenfrequences taken into account; ch is a vector of
defect parameters which plays the role of a chromosome
in EA; and w1 and w2 are the weights.

In order to evaluate the field of displacement u(x) and
eigenfrequences, one should solve a boundary-value
problem using the boundary element method (BEM) or
the finite element method (FEM). This part of the

identification process is very time consuming because the
fitness function has to be computed for each chromo-
some in every generation. The second disadvantage of

such an approach is that the time needed for solving the
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identification problem depends on the geometry of the
model [6,7]. One way to speed up the identification

process is to improve the fitness function evaluation by
replacing the BEM or FEM solution by an approximate
solution which is obtained by using the ANN. As a

result, by coupling of the EA and the ANN a compu-
tational intelligence system (CIS) is obtained.

2. Approximation and identification

2.1. Approximation

In order to approximate the boundary displacements
and eigenfrequences, the Fuzzy-Artificial Neural Net-

work (FANN) with gaussian description of a
membership function is taken into account [7]. The
network is trained by means of the back propagation
method with a momentum. In such a method the

learning process depends on minimizing of a square
error:

E ¼ 1

2
y� d½ �2 ð2Þ

where x is the input vector, y is the value approximated
by FANN, and d is the desirable answer of FANN for

input vector x. In order to avoid local minima during the
training process the simulated annealing, the ‘jog of
weight’ technique and learning using EA were used.

2.2. Identification

A two-dimensional elastic body with D � Dmax

internal defects in the form of circular holes is con-
sidered. Dmax means the maximum number of defects
that can be expected in the body. The EA should identify
the actual number of defects D and their parameters

based on information about M eigenfrequences and
displacements in N sensor points on the boundary of the

body. The unknown parameters of the defect are the
coordinates of the hole’s centre (Xz, Yz) and its size Rz

(z = 1,2, . . ., Dmax).

Defects are specified by a chromosome:

ch ¼ X1;Y1;R1;X2;Y2;R2; . . . ;Xz;Yz;Rz; . . . ;½
XDmax;YDmax;RDmax� ð3Þ

where Xz, Yz and Rz play the role of genes. The EA
sends the chromosome with the suggested values of
positions and of radii of defects to the approximation

block. When Rz < Rmin, the program assumes that genes
Xz, Yz, Rz are inactive genes and:

Rz ¼ 0 8 Rz < Rminð Þ ð4Þ

The condition (4) controls the number of defects. Genes
with information about the position and shape of defects
are sent to inputs of the FNNs. Approximated dis-

placements in several sensor points on the boundary of
the model and eigenfrequences are obtained on the
outputs of the ANNs. They are sent back to the EA
where the fitness function of each chromosome is

computed.

3. Numerical examples

A two-dimensional elastic rectangle in plane stress
under static load is considered (Fig. 1). The body con-

tains one or two defects in the form of a circular hole.
The geometrical and material parameters are presented
in Table 1. One should find the number, position and

size of the internal defects. To solve the problem the EA
coupled with the FANN is applied. The FANN is cho-
sen because of its good approximation abilities [8], and
the short time needed for learning [7].

Fig. 1. An elastic body with one (a) and two (b) internal defects.
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Table 1

The geometrical and material parameters of the plate

Geometrical and

material parameters

A structure with

one defect

A structure with

two defects

L [cm] 4.0 4.0

H [cm] 2.0 2.0

q [N/m] 3750 3750

E [MPa] 2.e5 2.e5

� 0.3 0.3

Rmin [cm] 0.0314 0.0314

Table 2

The parameters of the EA

Number of chromosomes 300

Number of iterations 100

Number of design parameters 6

Probability of uniform mutation 0.25

Probability of arithmetic crossover 0.25

Probability of cloning 0.05

Selection coefficient 0.75

Fig. 2. Defect: actual and found by means of the EA with the BEM: (a) one defect (b) two defects; using the EA with the FANN: (c)

one defect, (d) two defects.

Fig. 3. CPU time using the EA with the BEM or the FANN for a body with (a) one defect (b) two defects.
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The EA parameters are presented in Table 2. The
learning and testing data were obtained using the BEM

and the FEM. The example of the results of the identi-
fication using the EA are presented in Fig. 2. The CPU
time of the identification is shown in Fig. 3.

4. Conclusions

The presented tests confirm that the EA coupled with
the ANN identifies the number, positions and radii of
circular holes in the 2D body under static load.

This approach is less accurate but much faster than
EA coupled with the BEM. In the case of the identifi-
cation of two internal defects the computing time using

the CIS is more than 90% shorter than the computing
time using the EA with the BEM. The more complicated
geometry of the examined body, the longer time for

identification using EA with BEM is needed. In the
approach proposed the time of computations does not
depend on the geometry of the body.

The time of computation using the EA with the
FANNs, presented in this paper, does not take into
account the time needed to prepare the learning and
testing data, and to learn the FANNs. This approach is

worth using when the defect identification in many
structures with the same shape has to be done. In such a
case the time needed to prepare learning and testing sets

and to train the ANN is not significant.
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[2] Waszczyszyn Z, Ziemiański L. Neural networks in the

identification analysis of structural mechanics problems.

CISM Advanced School on Parameter Identification of

Materials and Structures, Udine, 2003.
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