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Abstract

Recently the US Navy has invested in supercavitating torpedo research and development. The supercavitating

torpedo is a new technology to the United States and many challenges are associated with its design. One such challenge
is the uncertainties involved. Furthermore, there are no full data sets to create probability distributions for classical
reliability based analysis. Most information is in the form of expert opinion from the designers. Thus, evidence theory is

a natural choice to determine reliability of the system. In this paper a cavitator structure is presented and optimized for
shape and structural thickness with respect to stress, buckling and weight. Finally, evidence theory is used to handle the
limited data situation as an alternative to classical probability theory for reliability assessment.
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1. Introduction

A supercavitating torpedo is a high-speed underwater
vehicle that is completely surrounded by a cavitation
bubble or cavity. This cavity eliminates the viscous drag
associated with underwater motion and enables the

torpedo to obtain high speeds. The cavitator, located at
the front of the torpedo, initiates the cavity and is thus
very important. Currently the US Navy is in the devel-

opmental stages of designing a supercavitating torpedo.
To explore new design ideas many researchers have
developed mathematical models for computer simula-

tion. Much work has been done with regard to the
structural design by Ruzzene [1] and Alyanak et al. [2].
Further work has been done with regard to the cavitator

shape design by Alyanak et al. [3]. However, in all cases
no uncertainty information was incorporated. Likely
this is because no clear data sets are available to apply
classical probability theory without making gross

assumptions. To overcome this, recent work by Ober-
kampf and Helton [4] is utilized. They have categorized
uncertainty into two distinct types: aleatory and epis-

temic uncertainty. Aleatory uncertainty is known as
irreducible or inherent uncertainty and can be handled
with classical probability theory. However, epistemic

uncertainty is subjective and comes from lack of
knowledge or incomplete data sets. Evidence theory has

been applied to structural design problems by Bae et al.
[5], and shown to be able to handle both epistemic and
aleatory uncertainty. In this paper evidence theory is
utilized to estimate reliability for a cavitator structure

that is optimized for shape and structural thickness with
respect to stress, buckling and weight requirements.

2. Evidence theory

Evidence theory (ET) was developed by Shafer [6]
from Dampster’s work. Due to this ET is also known as
Dampster–Shafer theory. ET is characterized by two

distinct measures that bound the uncertainty: belief
(BEL) and plausibility (PL). These are formulated from
the basic belief assignment (BBA) which is developed

from expert opinion for each uncertain parameter in
question. The BBA information is contained in the
function m(A), where A is a possible event. Thus, BBA is
a mathematical representation of partial belief for a set

of possible events. From the BBA, belief and plausibility
can be defined by:

BELðAÞ ¼
X
B�A

mðBÞ ð1Þ

PLðAÞ ¼
X
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where A and B are events, and BEL and PL can be
interpreted as upper and lower bounds of probability.

Because no assumptions were made to obtain these
quantities, they are consistent with the given partial
evidence.

3. Cavitator problem

The cavitator is subjected to extreme forces during

operation. It is desired to design a cavitator for a
supercavitating torpedo considering shape, structure,
buckling performance, stress limitations and weight. The

optimal structure must be thin walled because the US
Navy wishes to include radar arrays inside the cavitator.

To accomplish this task, a supercavitating flow pre-

diction method, based on potential flow theory,
developed by Kirschner et al. [7], is utilized to determine
the fluid characteristics for a given cavitator shape.
Using this fluid flow analysis capability the pressure

profile along the cavitator and the overall coefficient of
drag can be determined. A finite element (FE) model,
composed of plate elements, is then constructed of the

required shape and the calculated pressure is applied.
Using this FE model a stress distribution can be pre-
dicted for the given load. This stress distribution can

then be utilized to determine the buckling stability based
on the bifurcation buckling problem defined in Eq. (3).

K½ � þ �cr K�½ �ref
� �

�f g ¼ 0f g ð3Þ

Here [K] is the global stiffness matrix, [K�]ref is the global
stress stiffness matrix with respect to the pressure load,
�cr is the first eigenvalue of the problem or critical

multiplier, and {�} is the eigenvector associated with �cr.
The value of �cr is used to define a state of stress at
which the system becomes unstable, �cr < 1.0.

4. Optimization problem

The objective of the problem is to minimize the drag

due to fluid flow and structural weight associated with
the cavitator shape. Mathematically this is done by:

min
CD

CD0
þ M

M0

� �
ð4Þ

where CD is the drag coefficient and M is the cavitator
mass. The nominal values CD0 and M0 are defined such
that the weighting of each ratio are equal to each other.

The design variables considered in the problem become:
two variables to define the axisymmetric cavitator shape
shown in Fig. 1 and nine variables that defined different

skin thicknesses within the cavitator structure. The skin

thickness variables define the skin thickness for each ring
of elements shown in the deterministic optimal solution

in Fig. 2. The constraints on the problem are developed
to avoid unrealistic cavitator shapes, ensure �cr � 1.1,
and have a maximum Von-Mises stress less than 15 ksi

in every element.

5. Proposed evidence theory methodology

The problem depicted is computationally extensive.
To perform evidence theory reliability analysis it is
necessary to reduce the computational expense of the

problem. The proposed algorithm begins at the deter-
ministic optimum shown and explores the design space
defined by the BBA for each variable and constraint. To

accomplish this, the cavitator problem can be reduced to
the function:

fYg ¼fðfXð�iÞgÞ ð5Þ

For each value in the output vector {Y} a multi-point

Fig. 1. Shape definition for axisymmetric cavitator shape.

Fig. 2. Optimal structural shape.
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approximation (MPA) can be developed with respect to

the design variables {X}, that are functions of the ran-
dom parameters �i, to approximate the design space of
interest. This approximation is developed by combining

local two-point approximations, TANA2 [5], with a
weighted sum technique.
The epistemic uncertainty defined in the BBA is

expressed by intervals (upper and lower bounds). These

intervals can be scattered, nested or overlapped. The
assignment value given to each interval represents the
imprecise statistics of the parameter. As the dimension

of the problem increases, the computational expense for
calculating BEL and PL from the BBA increases sub-
stantially. The proposed method utilizes the MPA to

reduce the cost. It then solves sub-optimization

problems to identify the failure surface boundaries,

which may be highly nonlinear. These boundaries
become the bounds of integration or numerical sum-
mation as defined in Eqs. (1) and (2).

BBA for this problem is simplified by considering the
variability in skin thickness as one design variable: the
percent change for each of the previously defined nine
variables is equivalent. BBA for the three remaining

variables is defined in Fig. 3. Notice, the defined inter-
vals may partially overlap each other and the
overlapping parts are completely independent of each

other. The complete results are contained in Table 1.
The main active constraint becomes the minimum stress
constraint while the weight and drag are minimized. The

reliability assessment was carried out at the deterministic

Fig. 3. BBA for three design variables.

Table 1

Results of cavitator problem

Deterministic design point Constraint values at optimum

Shape Variable 1: �0.8903 �c: 70.8

Shape Variable 2: �0.6676 Max Von-Mises Stress (ksi): 14.96

T var: 1.000 Wt (lbs): 3.80

Variable Thickness Values (inches)
Cd: 0.1547

T1 T2 T3 T4 T5 T6 T7 T8 T9

0.0313 0.0313 0.1093 0.0387 0.0335 0.4980 0.4743 0.3925 0.0651

Reliability Analysis

With MPA 120 f(x) calls No MPA 544 f(x) calls

BEL 0.0064 BEL 0.0064

PL 0.8898 PL 0.8950
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optimum (i.e. the point in question was directly on
failure boundaries) yielding a very high PL value. The

BEL is significantly less than the PL because of the very
broad BBA for each variable. As the BBA becomes
more defined the BEL and PL converge to the true

probabilistic value.

6. Summary

A supercavitating torpedo cavitator was designed.
Reliability assessment was determined for a given set of

BBA using ET. Because of the flexibility of ET the very
limited information case given in Fig. 3 can be handled
without making assumptions. The computational

expense of solving the reliability problem was reduced
by developing global approximations of the required
portion of the design space by combining local TANA2

approximations.
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