
Bounds on structural system reliability in the presence of interval

variables

Phani R. Adduri*, Ravi C. Penmetsa, Ramana V. Grandhi

Department of Mechanical and Materials Engineering, Wright State University, Dayton, OH 45435, USA

Abstract

The failure of a structural system is usually governed by multiple failure criteria, all of which are to be taken into

consideration for the reliability estimation. If all the uncertain parameters are defined as random variables, then the
reliability of a structural system can be estimated accurately by using the existing techniques. But when the knowledge
about some of the variables is limited to lower and upper bounds, the entire range of these bounds should be explored

while estimating the bounds on the reliability. The computational cost involved in estimating these bounds increases
tremendously because a single reliability analysis, which is a computationally expensive procedure, is performed
multiple times for each configuration of the interval variables. To reduce the computational cost involved, high-quality

function approximations for each of the limit states and the joint failure surface are considered in this paper. The
proposed technique is demonstrated with a numerical example.
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1. Introduction

A structure consists of many individual components,
all of which have the potential to fail. The failure of any

of these individual components might lead to structural
collapse. The reliability analysis of structural systems
involves the consideration of multiple limit states from

different disciplines, which might be correlated. Each
limit state is an implicit function and requires expensive
computations to evaluate the function value and the

gradients that are needed for reliability analysis.
Therefore, in the presence of multiple limit states the
computational effort involved in estimating the failure

probability increases tremendously.
For only random variables, the failure probability of a

structural system is obtained by solving the multi-
dimensional integral

pf ¼
Z

�

fxðXÞdX ð1Þ

where pf is the probability of failure and fx (X) denotes
the joint probability density function of the vector for

the basic random variables, X = (x1, x2, . . ., xn)
T, which

represent uncertain quantities. Furthermore, � is the
joint failure region modeled by all of the limit-state
functions. Monte-Carlo simulation can be used to

evaluate this multi-fold integration. However, it requires
a large number of samples to accurately estimate the
small order of failure probabilities. To reduce the com-

putational cost, algorithms [1,2] were developed that
make use of surrogate representations of the failure
surface and compute the failure probability.

Moller et al. [3] developed an algorithm to estimate
the bounds on the reliability for problems with mixed
variables and a single failure criterion. But methods need

to be developed for mixed variable problems with mul-
tiple failure criteria.
In the presence of both random and interval variables,

every combination of the interval variables has an

unknown probability. At each combination, a reliability
analysis needs to be carried out. This increases the
computational cost exponentially with the increase in

interval variables. Moreover, for each combination a
new joint failure region should be modeled accurately
for the prediction of the reliability. To reduce the com-

putational cost involved, high-quality approximations
are used in this paper for modeling the implicit limit-
state functions and the joint failure region.
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2. Proposed methodology

For modeling the joint failure region using an
approximation, the limit-state functions should be
available in closed form so that the points on the joint

failure surface can be sampled. In the case of an implicit
function, several local approximations can be con-
structed, with sample points around the most probable

point (MPP) for each limit-state function, and blended
into a multi-point approximation (MPA) [4]. The MPA
can be regarded as a weighted sum of several local
approximations. It can be written using the general

formulation as:

~FðXÞ ¼
XK
k¼1

WkðXÞ ~FkðXÞ ð2Þ

where ~Fk(X) is a two-point local approximation, k is the

number of local approximations, and Wk is a weighting
function that adjusts the contribution of ~Fk (X) to ~F (X)
in Eq. (2). As the accuracy of the MPA is based on the

accuracy of the local approximations, two-point adap-
tive nonlinear approximations (TANA2) [5] are used as
local approximations to construct the MPA for each
limit-state function. As TANA2 can capture the infor-

mation of the limit-state function around the vicinity of
the points used, MPA can retain the information for
each of the failure surfaces without increasing the

computational effort. Since each of the limit-state
functions are modeled using high-quality approxima-
tions, these approximations can be used as closed-form

expressions for sampling the points on the joint failure
surface.
The details of the algorithm and its implementation

are presented below:
1. Estimate the MPP of each of the limit-state functions

with the interval variables at their central values. The
MPP is obtained by using the modified Hasofer Lind

–Rackwitz Fiessler (HL–RF) algorithm with
TANA2 approximate models. This reduces compu-
tational time and is efficient for highly nonlinear

problems with a large number of random variables.
2. Design points are sampled within the vicinity of each

MPP using a Latin hypercube sampling technique.

The bounds on the random variables are taken to be
two standard deviations on either side of each MPP.

3. Local TANA2 approximations are constructed for

the set of design points sampled around each MPP.
These local TANA2 approximations are blended
into a multi-point approximation, which captures
the behavior of the limit-state function around the

MPP. Using the same procedure, an MPA is con-
structed for each of the limit-state functions.

4. For each combination of the interval variables,

points are sampled on the joint failure surface using

surrogate representations of each of the limit states.
Multiple response surface models are constructed
using these sampled points. In order to improve the

accuracy of each of the response surface models, the
design space is sub-divided until the regression sum
of squares value of the approximations in each sub-

division is acceptable.
5. The convolution integral is solved using fast Fourier

transforms (FFT) based on the response surface

models to estimate the failure probability of the
system [2].

6. Steps 4 and 5 are repeated for every combination of
the interval variables and the bounds on the failure

probability are the minimum and maximum values
obtained from all of the resulting combinations.
Figure 1 illustrates the methodology discussed

above.

3. Numerical example

A numerical example is presented to show the

applicability of the proposed method. This methodology
could be applied to problems with multiple non-normal
random variables and implicit or explicit limit-state
functions. The estimates obtained by using the above-

mentioned method are compared with the results
obtained from Monte-Carlo simulations.

3.1. Wing structure example

A wing structure, as shown in Fig. 2, is considered to

estimate the bounds on the failure probability. Two

Fig. 1. Proposed algorithm details
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failure criteria of the system are considered: the dis-
placement at the tip of the wing when subject to

aerodynamic loading less than 1.6 in Eq. (3) and the
fundamental natural frequency of the wing more than
1.52 Hz (Eq. 4).

g1ðXÞ ¼ DtipðXÞ � 1:6 � 0 ð3Þ
g2ðXÞ ¼ 1:52� !1ðXÞ � 0 ð4Þ

The thicknesses of the first two span-wise skins are
physically linked to have the same value, which is
modeled as a normal distribution with a mean of 1.5 in.
The same is done with the other two span-wise skins. All

of the spars are linked to have the same thickness and
the same is done with the ribs. These are also modeled as
normally distributed random variables with a mean of

0.5 in. Physical linking results in four random variables
and the coefficient of variation is assumed to be 10% for
all of these variables. The Young’s moduli of the two

physically linked skins are modeled as interval variables.
Moreover, the Young’s modulus of the spars and ribs is
also modeled as an interval variable. These variables

were considered to be in the interval of [1.04E7, 1.06E7]
psi.

Table 1 shows the comparison of the reliability esti-
mated using the proposed methodology and Monte-

Carlo simulation. As this is a problem with implicit
limit-state functions, multi-point approximations were
constructed for each of the limit states which were used

as closed form expressions in estimating the bounds on
the reliability. The bounds obtained by using the pro-
posed technique were conservative with a difference of

around 5% on the lower bound and 4% on the upper
bound. The proposed methodology required only 81
exact simulations as opposed to 1.2 million simulations
for Monte Carlo.

4. Summary

Due to the vagueness in the available information, all
of the uncertain parameters in a problem cannot be

assumed to be random in nature. When dealing with a
combination of random and nonrandom variables, the
computational cost increases exponentially. To reduce

the computational cost without a loss of accuracy, a
methodology to efficiently deal with mixed variables is
presented in this paper.
The accuracy of the proposed methodology depends

entirely on the accuracy of the MPA constructed for
each of the limit-state criteria as the points on the joint
failure region are sampled based on these MPA. Once a

good approximation is constructed for the joint failure
region, the convolution integral is be solved accurately
by using FFT.
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Fig. 2. Wing structure.

Table 1

Comparison of failure probability bounds for the wing

structure

Methodology Failure probability

bounds

% Difference

Lower

limit

Upper

limit

Monte Carlo [0.00132, 0.04522] — —

Proposed algorithm [0.00125, 0.04692] �5.30 3.76
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