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Abstract

This paper presents a novel space–time upwind cell-vertex scheme (STU-CVS) for conservation laws. The new

scheme is inspired by the revolutional space–time conservation element/solution element (CE/SE) method that utilizes a
staggered space–time mesh to enforce the space–time flux conservation. It will be shown that the new scheme is
independent of the underlying mesh, and the implementation of the new scheme becomes easier and more clear

compared with the original CE/SE method. We also explore the inherent upwind nature of the new scheme as well as
the CE/SE method. The inherent upwind nature eliminates the need of using Riemann solvers for advection-dominant
problems. The numerical dissipation of the new scheme as well as the CE/SE method is small. Finally, we provide some

preliminary numerical results to demonstrate the performance of the new scheme.
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1. Introduction

About a decade ago, the space–time conservation
element/solution element (CE/SE) method for con-
servation laws was invented by Chang and To [1]. The

CE/SE method is revolutional, not evolutional, in many
senses. The space–time CE/SE method has many non-
traditional features. It introduces the concepts of

conservation elements (CEs) and solution elements
(SEs). The space–time domain is filled by nonoverlap-
ping CEs. The boundary of each CE is divided into

several parts, with each belonging to a unique SE. Lin-
ear variations of the solution are assumed within each
SE. The final formulation is a result of enforcing the

space–time flux conservation on a staggered space–time
mesh. The CE/SE method is a Riemann solver-free
approach. Even though it is a second-order scheme in
both space and time, its numerical dissipation is extra-

ordinarily small, making it capable of accurately
handling both strong shocks and small disturbances
simultaneously. The CE/SE method is able to simulate

flows with very low Mach number without using any
type of preconditioning technique.
Compared with other traditional numerical schemes

using (approximate) Riemann solvers, the algorithm

using the CE/SE method is extremely simple and highly
accurate. We have many reasons to believe that the CE/
SE method will be recognized as a new milestone on the
evolution path of computational fluid dynamics (CFD).

Surprisingly, despite the excellent performance of the
CE/SE method, it seems that this scheme has not been
well known in the CFD community. Most publications

related to the CE/SE method are authored or coau-
thored by Chang, the inventor of the CE/SE method.
See Chang and Wang [2] for an abundant list of those

publications.
The original CE/SE method defines different CEs and

SEs for rectangular and triangular meshes. In this paper,

we will give new definitions of the CE and SE that are
independent of the underlying mesh. The resultant new
scheme is thus suitable for arbitrarily unstructured
meshes. The new scheme in this paper will be named as a

space–time upwind cell-vertex scheme (STU-CVS). We
also explain why Riemann solvers are not necessary in
STU-CVS as well as the CE/SE method by exploring

both schemes’ inherent upwind nature. Finally, we will
provide some preliminary results to demonstrate the
performance of the new scheme.
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2. The space–time upwind cell-vertex scheme

The present STU-CVS inherits the core idea of the
CE/SE method that uses the staggered space–time mesh
to enforce the space–time flux conservation. However,

the staggered space–time mesh is realized through the
alternate solution updating at cell centroids and vertices
within a time step, which is distinct from the original

CE/SE method.
In STU-CVS, we divide a single time step into two

half time steps. Thus, n = 1, 2, 3 . . . represents each new
time level and n ¼ 1

2,
3
2,

5
2 . . . represents the half time level

in each time step. We store unknowns on both vertices
and cell centroids. However, the solutions at vertices and
cell centroids are updated on different time levels. Sup-

pose the initial conditions are given on each vertex of the
mesh. We can march the solution in time in an alter-
nating way. At each half time level (cell level), the

solutions at cell centroids are updated using the known
vertex solutions at previous old time level. At each new
time level (vertex level), the solutions at vertices are

updated using the known cell-centroid solutions at pre-
vious half time level.

Fig. 1 illustrates the conservation elements for one-
dimensional (1D) mesh. The empty circles represent the

cell centroids and the filled circles represent the vertices.
The boundary of the CE is composed of several parts,
with each part belonging to a unique SE. For example,

the CE associated with ðjþ 1
2, n� 1

2Þ is a rectangular
region connecting ABCDEF (see Fig. 1a). On the
boundary of this CE, BC and CD belong to the SE (j, n

� 1), DE and EF belong to the SE (j+ 1, n � 1), and FB
belongs to the SE ðjþ 1

2, n� 1
2Þ. Within each SE, the

solution is assumed to be distributed linearly, so the one-
point integration rule is sufficient to evaluate the flux
across the boundary. Since the solution and its deriva-

tive at (j, n � 1) and (j + 1, n � 1) are known, we can
update the solution at ðjþ 1

2, n� 1
2Þ by enforcing the

space–time flux conservation across the boundary of its

CE. Fig. 2 illustrates the conservation elements for two-
dimensional (2D) triangular mesh. The same definition
can be applied to the quadrilateral mesh and even hybrid
meshes without any ambiguity. We can readily realize

that this definition of CEs is independent of the under-
lying mesh and thus is suitable for any type of
conforming mesh. Note that for structured rectangular

meshes, our new definition of the CE is similar to the
second kind of CE proposed in Zhang et al. [3].
The implementation of the new STU-CVS becomes

extremely simple and clear. The pseudo-code below
illustrates the marching procedure.
call initialize_solution_at_vertices ()
call initialize_gradient_at_vertices ()
do its = 1, nts

call update_solution_at_cell_
centroids ()
call update_gradient_at_cell_
centroids ()
call update_solution_at_vertices ()
call update_gradient_at_vertices ()

enddo

Fig. 1. Illustration of the CEs of 1D meshes.

Fig. 2. Illustration of CEs of triangular meshes.
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3. Inherent upwind nature of the new scheme

As is well known, a numerical scheme must be
upwinded somehow for advection dominant problems to

ensure numerical stability. In this section, we will show
that the new scheme as well as the CE/SE method pos-
sess this upwind feature in an inherent way, which

makes it distinct from and outstanding among many
other numerical schemes where the upwinding idea is
realized explicitly.
To illustrate the inherent upwind nature of the new

scheme as well as the CE/SE method, we consider the
simple 1D initial-value, linear advection problem

@uðx,tÞ
@t

þ a
@uðx,tÞ
@x

¼ 0 ð1Þ

where a is the advection speed, which is a constant. The
space–time flux is h = (u, au).

Suppose we want to update the solution at vertex j at
time level n. By enforcing the space–time flux con-
servation across the boundary of the CE of node (j, n)

(see Fig. 1b), we can obtain the following formulation
for u at (j, n):

unj ¼
1

2

�
ð1þ �Þun�1=2j�1=2 þ ð1� �Þu

n�1=2
jþ1=2

þð1� �
2Þ�x

4
ðuxÞn�1=2j�1=2 � ðuxÞ

n�1=2
jþ1=2

h i�
ð2Þ

We look at the situation when the Courant number
� = � 1, which is the stability limit of current explicit
scheme; the sign of � depends on the direction of the

advection speed. From Eq. (2), we have

unj ¼ u
n�1=2
j�1=2 ð3Þ

when � = 1. Eq. (3) clearly means that the solution u at
time level n is simply the solution at time level n� 1

2 at
location �x

2 upstream of the current location, which is
exactly the demonstration of the theory of character-

istics. A similar conclusion can be drawn when � = �1,
in which the upwind direction will take the opposite
direction. Therefore, the space–time formulation will

automatically pick up the upwind direction. When � =
0, which never happens in reality since �t cannot be 0 in
a real simulation, then u in Eq. (2) will become the

simple arithmetic average of two ingredients. For
0< �<1, the CE/SE scheme is clearly an upwind-
biased scheme. At this point, we can summarize the

conclusions we have reached:

. When � = � 1, the CE/SE method is exactly the

demonstration of the theory of characteristics.
Indeed, we can expect that the a scheme tends to
yield an exact solution for both u and ux when j�j
becomes increasingly close to unity.

. When 0< �<1, the CE/SE method is an upwind-
biased scheme.

The inherent upwind nature of the new scheme as well

as the CE/SE method explains why the Riemann solver
is unnecessary. Therefore, many annoying numerical
problems, such as the carbuncle phenomenon associated

with the Riemann solver on multidimensional meshes,
can be avoided. Another favorable outcome due to this
inherent upwind nature is that the numerical dissipation
is small in the new scheme as well as the CE/SE method

and can be controlled in a more flexible way.
It is interesting to note the following: We did not

intentionally enforce the upwind idea in deriving the

final formulation. The upwind idea simply comes natu-
rally out of this staggered space–time formulation. This,
on the other hand, proves that the upwind idea is

naturally needed for handling this type of problem.

4. Preliminary numerical results

4.1. One-dimensional linear sinusoidal wave advection
problem

The first example is the 1D linear sinusoidal wave
advection problem on the computational domain [0, 2�]
with the initial condition u(x, 0) = sin x and the periodic
boundary conditions. The exact solution is the initial

condition convected with the speed a, i.e. u(x, t) = sin(x
� at). In this example, a = 1. We use this example to
verify that the nondissipative a scheme [2] tends to yield

the exact solution when the Courant number j�j is
increasingly close to unity. Table 1 shows the L2 norm of
the numerical error of u and ux after ten time steps with

different values of �. As can be seen, the closer the value
of � is to 1, the smaller the errors for both u and ux.
Indeed, when � = 1, the solution is expected to be exact

according to the theory of characteristics.

4.2. Two-dimensional isentropic vortex advection problem

The second example is the isentropic vortex advection

problem on a 2D computation domain [0, 10] � [0, 10]
[4]. The initial conditions are given as an isentropic
vortex with the center at (5, 5), i.e.

uðx,y,0Þ ¼ 1� �

2�
e0:5ð1�r

2Þðy� 5Þ

vðx,y,0Þ ¼ 1þ �

2�
e0:5ð1�r

2Þðx� 5Þ

Tðx,y,0Þ ¼ 1� ð� � 1Þ�2
8��2

e1�r
2

Sðx,y,0Þ ¼ 1
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where � = 5 represents the vortex strength and r2 =
(x � 5)2 + (y � 5)2. The periodic boundary conditions

on both directions are assumed. The density � and the
pressure p can be obtained via

�ðx,y,0Þ ¼ Tðx,y,0Þ
Sðx,y,0Þ

� �1=ð��1Þ
,

pðx,y,0Þ ¼ �ðx,y,0ÞTðx,y,0Þ

It can be verified that the Euler equations with the
above initial and boundary conditions allows an exact

solution that is the initial solution advected with the
speed (1, 1) in the diagonal direction. Fig. 3 shows the
comparison between the computed density distribution

and the exact solution at the horizontal cut y = 5 for
T = 10 and T = 100 on an 80� 80 quadrilateral mesh.
Equally good solutions, though not shown, can be
obtained on the triangular mesh with comparable mesh

resolution. If we compare the current solution with that
obtained using a second-order total variation diminish-
ing (TVD) scheme [4], we can come to the conclusion

that the second-order space–time CE/SE method is
superior to the second-order TVD scheme in terms of

the solution resolution. The solution at T = 100
obtained using the second-order TVD scheme is com-

pletely unacceptable, since the peak of the vortex has
been severely smeared.

4.3. Two-dimensional shock reflection problem

This steady problem has been tested extensively using
the CE/SE method [5,6]. An incident oblique shock with
shock angle of 298 hit the horizontal wall and a reflected

shock will turn the flow behind it back to the original
freestream direction. The freestream flow is a supersonic
flow of Mach 2.9. The computational domain is a

4.0� 1.0 rectangle containing 160 � 60 uniform rec-
tangles. The inflow conditions are (�, u, v, p) = (1.0, 2.9,
0.0, 0.71428). The flow conditions at the top boundary

are also given such that the specified incident oblique
shock relations are satisfied. Fig. 4 shows the computed
pressure contours and the pressure distribution at hor-
izontal cut y = 0.5 compared with the exact solution.

Both the incident shock and the reflected shock are
captured sharply.

Table 1

The scalar advection equation a = 1, �x = 2�/20. L2 error after ten time steps with different value of �. Nondissipative a scheme is

used

�t � kuh – uk2 kuhx – uxk2
0.3 0.9549296586 0.194183E–02 0.583557E–02

0.31 0.9867606472 0.599893E–03 0.180919E–02

0.314 0.9994930426 0.234305E–04 0.706811E–04

0.3141 0.9998113525 0.872320E–05 0.263146E–04

0.31415 0.9999705074 0.136409E–05 0.411494E–05

0.314159 0.9999991553 0.390692E–07 0.117857E–06

0.3141592 0.9999997920 0.962291E–08 0.290286E–07

0.31415926 0.9999999829 0.789006E–09 0.238014E–08

0.314159265 0.9999999989 0.528471E–10 0.159430E–09

Fig. 3. Vortex advection. Density at horizontal line y = 5. 80� 80 quadrilateral mesh.
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5. Conclusions

This paper presents a novel STU-CVS for conserva-

tion laws. The STU-CVS is an extension of the
revolutional space–time CE/SE method with new defi-
nitions of the CEs. The extension makes the

implementation of STU-CVS easier and more clear for
arbitrarily unstructured meshes, compared with the
original CE/SE method. The inherent upwind feature of
STU-CVS as well as the CE/SE method makes them

successful for advection problems without resorting to
the traditional (approximate) Riemann solvers. The
preliminary results using the new scheme demonstrate

that the new scheme is very promising in simulating
advection-dominant problems, such as Euler equations.
Applications for Navier–Stokes equations and exten-

sions to three-dimensional cases are our ongoing work.
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Fig. 4. Shock reflection. Pressure on 60� 160 quadrilateral mesh.
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