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Abstract

We describe how wavelets constructed out of finite-element interpolation functions provide a convenient mechanism
for both error-estimation and adaptivity in finite-element analysis. This is done by posing an adaptive refinement

problem as one of compactly representing a signal (the solution to the governing partial differential equation (PDE) or
boundary integral equation (BIE), with isolated features of interest. To compress the solution in an efficient manner, we
first compute approximately the details to be added to the solution on a coarse mesh in order to obtain the solution on a

finer mesh (the estimation step) and then compute exactly the coefficients corresponding to only those basis functions
contributing significantly to the details (the adaptation step). In this sense, therefore, the proposed approach is unified,
since the basis functions used for error-estimation are exactly the same as those used for adaptive refinement. We

illustrate the application of the proposed techniques for goal-oriented adaptivity for second- and fourth-order linear,
elliptic PDEs.
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1. Introduction

Multiresolution signal-processing techniques such as

wavelets and filter-banks are useful in generating com-
pact, adaptive representations of data with localized
features. They are therefore highly appropriate as tools
for adaptive computational modeling. In constructing

wavelets for this application, a particularly useful
starting point is the hierarchical finite-element frame-
work [1]. Using procedures such as stable completion [2],

the elementary wavelets arising out of this framework
may be customized such that the solution (and any lin-
ear functional of the solution) may be computed in an

entirely incremental manner. Further, the wavelets are
customized to give rise to well-conditioned stiffness
matrices. This in turn permits the use of inexpensive
iterative solvers to estimate the solution at each

resolution.
In this article, we consider the problem of goal-

oriented error estimation and adaptivity [3–5], where the

mesh is adapted to minimize the distance between the

true solution and the adapted finite-element solution in
terms of output functionals of interest rather than the
energy norm. In our approach, the estimate for the error

in the quantity of interest is provided directly by con-
sidering the contribution of wavelets at each level. This
is therefore unlike approaches such as the one proposed
by Becker and Rannacher [3] (in which element-wise

application of the Cauchy–Schwarz inequality leads to
overestimation of the error) or that proposed by Prud-
homme and Oden [4] (which involves the computation

of lower and upper bounds in the energy norm of errors
in both the solution and the influence function). In this
article, we also provide a priori accuracy bounds of the

error estimates at each level of resolution.

2. Theory and implementation

2.1. Problem definition

Consider a domain � � R
n, a Sobolev space V(�), a

symmetric, continuous, and coercive bilinear form a(�, �):
V � V ! R, and a bounded linear form l(�) : V ! R.
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Therefore, there exists a unique solution, u 2 V, to the
primal problem:

aðu,vÞ ¼ lðvÞ 8v 2 V

Given a bounded linear functional Q(�): V ! R (the

quantity of interest), the problem is to determine the
quantity Q(u) in an efficient and yet accurate manner.
This is done by considering an error tolerance, ", and
constructing a computationally inexpensive approxima-

tion �u 2 V, such that

dðu, �uÞ ¼� QðuÞ �Qð �uÞj j � "

We also define the solution to the dual problem

(called the influence function), z 2 V, satisfying

aðz, vÞ ¼ QðvÞ 8v 2 V ) QðuÞ ¼ aðz, uÞ ¼ lðzÞ

2.2. Multiresolution approximation

We now consider a multiresolution analysis of V

consisting of:
1. A ladder of nested approximation spaces:

V0 � V1 . . . � Vj . . . � V such that clos
[1
j¼0

Vj ¼ V

The approximation spaces are chosen as those gen-
erated by complete and compatible finite-element
interpolation functions defined on nested discretiza-

tions of �.
2. Complementary (wavelet) spaces Wj, such that

Vjþ1 ¼ Vj �Wj and aðu, vÞ ¼ 0 8u 2 Vj, v 2Wj

ð1Þ

The complementary spaces are constructed by per-
forming modified Gram–Schmidt orthogonalization

of hierarchical basis functions, as described in
Amaratunga and Sudarshan [6]. LetM(j) denote the
index set of all basis functions (the ‘wavelets’) in Wj.

The solution of the primal and dual problems

(respectively, u and z) can then be expanded as:

u ¼ u0 þ
X1
j¼0

rj and z ¼ z0 þ
X1
j¼0

	j

where u0, z0 2 V0 are, respectively, the ‘coarse’ compo-
nents of the solution and the influence function and rj, 	j
2 Wj are the corresponding details that enable the

transition from a coarser resolution to a finer resolution.

2.3. Adaptive refinement algorithm

We now summarize below the basic steps in our

multiresolution approach for goal-oriented error esti-
mation and adaptivity:

1. Given the solution at level j, uj, estimate the details rj.
The details are computed by solving a system of
equations of the form:

Cjþ1rj ¼ gj

where Cjþ1 ¼ aðwj,w
T
j Þ is the stiffness matrix corre-

sponding to the addition of scale-orthogonal

wavelets at level j and gj = l (wj) is the corresponding
load vector. For wavelets constructed using Gram–
Schmidt orthogonalization of the hierarchical basis,
the stiffness matrix, Cj+1 is the Schur’s complement

of the hierarchical basis stiffness matrix [6],

Cjþ1 ¼ CHB
jþ1 � ðBHB

jþ1Þ
T
K�1j BHB

jþ1 and ð2aÞ

gj ¼ gHB
j � ðBHB

jþ1Þ
Tuj ð2bÞ

where Kj is the stiffness matrix at level j, BHB
jþ1 is the

interaction matrix between the scaling functions and
hierarchical basis functions at level j, and CHB

jþ1 are

the stiffness matrices corresponding to the hier-
archical basis functions alone at level j. Computing
all the detail coefficients at level j by inverting Cj+1 is

extremely expensive, since it is normally a dense
matrix. However, Cj+1 and CHB

jþ1 (a sparse matrix)
are equivalent in the sense that for any vector of

detail coefficients, rj,

ð1� 
2Þ rT
j C

HB
jþ1rj � rT

j Cjþ1rj � rT
j C

HB
jþ1rj, 
 2 ½0; 1Þ

The matrix CHB
jþ1 therefore is a good approximation

to the matrix Cj+1. Hence, let

~rj ¼ ðCHB
jþ1Þ

�1gj ¼ ðCHB
jþ1Þ

�1 gHB
j � ðBHB

jþ1Þ
Tuj

� �
be an estimate for rj. It can be shown that the error
in the quantity of interest in approximating rj with ~rj
can be bounded above as:

Q ðrj � ~rjÞ
		 		 ¼ a ð	j; rj � ~rjÞ

		 		 � 
2ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 
2

p rj


 



E
	j


 



E

In order to compute the estimates ~rj more efficiently,
we use the property that the condition number � of

CHB
jþ1 is bounded uniformly [1]. Hence we can

approximately invert CHB
jþ1 using only a few conjugate

gradient iterations with diagonal scaling. The error

in estimating the functional of interest by approx-
imating ~rj with ~r

ðkÞ
j obtained after k conjugate

gradient iterations can be bounded above as

Q ~rj � ~r
ðkÞ
j

� �			 			 � 2ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 
2

p ~rj


 



E
	j


 



E
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2. Compute the contribution of each detail coefficient
to the linear functional, i.e. jQ ð~rT

j,mwj,mÞj, m 2MðjÞ.
The dual load vector Qj,m = Q(wj,m) is computed as
in Eq. (2b).

3. Given a threshold � j, select the setM0(j) of wavelets

to be retained, such that

Q ~rT
j,m0wj,m0

� �			 			 � �j max
m2MðjÞ

Q ~rT
j,mwj;m

� �			 			
8m0 2 M0ðjÞ

and solve for the retained details exactly by con-

structing only those scale-orthogonal wavelets
corresponding to the setM0(j).

4. Compute the contribution of retained details to the

influence function (needed for step 2 at level j + 1).
5. Finally, we can estimate the contribution of the

discarded detail coefficients as

dðujþ1, �ujþ1Þ �
X

m2M00ðjÞ
Q ~rT

j,mwj,m

� �						
						 ð3Þ

3. Numerical experiments

In this section, we present a few representative
numerical results for goal-oriented adaptivity for fourth-

order problems (bending deformation of thin plates).

3.1. L-shaped domain

We first consider the domain shown in Fig. 1a with

the goal of determining accurately the displacements at
point R. The thickness, Young’s modulus, and Poisson’s
ratio are taken, respectively, as h = 1, E = 1.0 � 107,

and � = 0.3. The plate is discretized using Bogner–Fox–
Schmidt elements.

In Fig. 1b, 1c, and 1d, we illustrate adapted meshes
corresponding to three refinement levels. Observe that in

this case, wavelets must be added both near the corner
and near the point of interest. The convergence of the
displacements with increasing levels of refinement is

shown in Table 1.

3.2. Cantilever overhang

In this example, we consider the goal of determining
the tip displacements of a uniformly loaded plate with
an overhang, as shown in Fig. 2a. The thickness,
Young’s modulus, and Poisson’s ratio are taken,

respectively, as h= 2, E= 1.0� 107, and �= 0.3. From
symmetry considerations, we choose a half-symmetric
model with the section indicated by line X–X being left

unconstrained. Fig. 2b, 2c, and 2d illustrate the adapted

meshes at levels j = 3, 4, and 5, respectively. The con-
vergence of the tip displacement is shown in Table 2. It

can be observed that to estimate accurately the point
value at the tip, it suffices to refine only near the origin
and not near the point of interest. This is because the
detail functions rj and 	j have large contributions from

wavelets only near the origin and not near the point of
interest.

4. Summary and conclusions

In this article, we have illustrated how wavelets con-

structed out of finite-element interpolation functions
provide a convenient and unified framework for goal-
oriented error estimation and adaptivity. In summary,

the most compelling arguments for adopting a con-
sistent multiresolution approach to both error-
estimation and mesh refinement are as follows:

1. Adaptive mesh refinement simply amounts to
retaining a given subset of basis functions at a finer
level of discretization (namely, those that contribute
significantly to the functional of interest). In con-

trast, many contemporary mesh-refinement methods
require the imposition of multipoint constraints on
irregular nodes that can become extremely comber-

some with multiple levels of refinement.
2. In a unified framework, it is possible to assess the

adaptation error at each level using Eq. (3). This is,

again, in contrast to classical adaptive finite-element

Table 2

Convergence of tip displacements

Level DoF Displacement Relative % Error

2 188 2.81636 17.6993

3 212 3.08416 9.8736

4 232 3.25319 4.9338

5 252 3.35341 2.0052

6 272 3.40989 0.3545

QRef 33668 3.42203

Table 1

Convergence of displacements at point R

Level DoF Displacement Relative % Error

3 260 0.0007348 5.7751

4 292 0.0007747 0.6511

5 324 0.0007757 0.5278

6 348 0.0007760 0.4874

QRef 50180 0.0007798
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Fig. 2. Tip displacements of a cantilever overhang. (a) Problem definition and adapted meshes at levels (b) j = 3, (c) j = 4, and

(d) j = 5.

Fig. 1 Point-wise displacements of a clamped L-shaped plate. (a) Problem definition and adapted meshes at level (b) j = 4, (c) j = 5,

and (d) j = 6. The arrow indicates the point of interest, R, and the circled vertices denote the set of wavelets retained at each level.
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refinement, where the technique used for error esti-
mation (for instance, post-processing of stress

gradients or computing element-level residuals) is
often unrelated to the technique used for mesh
refinement (remeshing or element subdivision).
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