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Abstract

A direct approach of coupling the element-free Galerkin method and the boundary element method is presented to

investigate the dynamic response of a two-dimensional halfspace. The near field around the transient load is discretized
by element-free Galerkin nodes also being able to take into account nonlinear effects, while the far field is modeled by
linear boundary elements in order to simulate the radiation conditions at infinity. Ensuring compatibility and equili-

brium, the two parts are coupled along their common interfaces, and the resulting system of equations is solved using
iterative procedures. It is shown that this methodology is efficient and turns out to be a good alternative to classical
methods for complex soil–structure interaction problems.
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1. Introduction

In soil–structure interaction analyses, discretization
methods such as the finite element method (FEM) and
the boundary element method (BEM) have been proven

to be robust and efficient. In this conventional way, the
structure is discretized by finite elements, while the soil
domain is modeled with either finite or boundary ele-

ments. The two parts are coupled together rigorously,
ensuring compatibility and equilibrium along the com-
mon interface. For the coupling itself, both the direct

method [1] and the iterative scheme [2] work well.
The newly appeared mesh-free concepts have shown

great promise in challenging traditional mesh-based

methods in many fields of computational mechanics.
Among all mesh-free methods, the element-free Galerkin
method (EFGM) proposed by Belytschko et al. [3] is one
of the most popular and best developed. In this paper,

an approach of coupling the EFGM and the BEM
suggested by Gu et al. [4] is applied to study the dynamic
response of a two-dimensional halfspace. The near field

around the load is modeled by EFG nodes taking into
account nonlinear effects, while the far field is discretized
by boundary elements to include Sommerfeld’s radiation

condition in the infinity. The efficiency of the new

methodology, in comparison with the conventional
coupled BEM–FEM approach, will be discussed.

2. Mathematical formulations and a numerical example

2.1. EFGM for nonlinear dynamic analysis

A displacement field around a point x generally can be

expressed by

uhðxÞ ¼
Xm
j¼1

pjðxÞajðxÞ ¼ PTðxÞaðxÞ ð1Þ

where pj (x) is a monomial, m is the number of terms in
this monomial, and aj (x) is an unknown coefficient.
Applying the numerical treatments summarized by

Belytschko et al. [3], aj (x) is obtained by a weighted
least-squares fit and the EFG approximation of the
displacement field can be expressed by

uEFGðx; tÞ ¼ uh ¼
Xn
I¼1

�IðxÞuIðtÞ ¼ �ðxÞUs ð2Þ

where n is the number of nodes inside the compact

support of x, �I (x) is the moving least-squares (MLS)
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shape function, and uI is the nodal parameter. �I (x) is
constructed by nodes inside the compact support �, and

its complexity stems from the ratio of the dimension of
� to the minimum nodal distance inside �, namely Dmax.
In order to shorten the computation time, Dmax is cho-

sen to be 1.2 in contrast to 2.0–2.5 suggested in the
literature [3,5]. It will be shown in the following context
that such a Dmax already leads to a sufficient precision.

Nonlinearities are assumed to appear only in the EFG
domain. Applying the procedures stated by Bathe [6],
the governing equilibrium equations describing a non-
linear dynamic problem can be given in a finite element

(FE) similar form such that

M €U
n

kþ1 þ C _U
n

kþ1 þ KT�Ukþ1 ¼ Fn � Rn
k; ð3Þ

Un
kþ1 ¼ Un

k þ�Ukþ1 ð4Þ

where M, C, and KT are global mass, damping, and
tangential stiffness matrices, respectively. If material

damping is neglected, then C drops. The matrix KT is
constructed in the same manner as that of the total
Lagrangian FE formulation. However, it is now based
on EFG nodes instead of finite elements.

The residual forces Fn � Rn
k and the variation of the

incremental displacements �Uk+1 can be calculated at
each iterative step. Un

kþ1,
_Un
kþ1, and

€Un
kþ1 are the dis-

placement, velocity, and acceleration vectors at time tn
for the iterative step k+1, respectively.

The modified Newton–Raphson method is used to

solve Eqs (3) and (4) at each time step. To obtain the
whole time history, the Newmark integration scheme is
applied.

2.2 Time domain elastodynamic BEM analysis

For small deformations in homogeneous, isotropic,
and linear elastic materials, the equation of motion in

two dimensions reads

ðc2p � c2s Þuk;ki þ c2s ui;kk � €ui þ
1

	
bi ¼ 0; i ¼ 1; 2; j ¼ 1; 2

ð5Þ

where cp and cs are dilational and shear wave velocities,
respectively. In plane strain state, they are given by

cp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eð1� �Þ

	ð1þ �Þð1� 2�Þ

s
and cs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E

2	ð1þ �Þ

s
ð6Þ

where E is the elastic modulus, � is Poisson’s ratio, and 	
is the material density.

Assuming zero body forces bj and zero initial condi-
tions, Eq. (5) can be reduced to an integral equation of
the form

ciuið�; tÞ ¼
Z
�

Z t

0

½u�j sjðx; �Þ � s�j ujðx; �Þ�d�d� ð7Þ

where sj (x,�) and uj (x,�) represent tractions and dis-

placements, respectively, at the surface � at time � . ui (�,t)
is the displacement at an arbitrary point � located either
on the smooth surface (ci = 0.5) or in the interior of the

body (ci = 1.0). s�j is the fundamental solution for the
traction, which corresponds to u�j , the fundamental
solution for the displacement. More details are provided
by Beskos [7].

Eq. (7) is discretized and solved numerically. Constant
elements are used for the spatial discretization, while
linear and constant shape functions are applied to

describe the time dependence of the displacements and
the tractions, respectively. Finally, collocation at each
boundary node and at all time steps leads to a system of

equations

UlsN ¼ TluN þ
XN
m¼2

TmuN�mþl �UmsN�mþ1 ð8Þ

in which U
l and T

m are the influence matrices of the
system at time m�t. To obtain consistency between the
EFG and boundary element (BE) formulations, the

boundary tractions s have to be transformed to a force
vector F by means of a matrix M, such that

F ¼Ms ð9Þ

M can be evaluated by the BE shape functions; more
details are given by von Estorff and Prabucki [8].

2.3 Coupling procedure

The coupling of the BEM and the EFGM is accom-
plished by introducing interface elements between both
subdomains (Fig. 1). In such interface elements, a hybrid

displacement function is defined. Along the interface
boundary �I, compatibility and equilibrium conditions
must be satisfied, i.e.

u
ð1Þ
I ¼ u

ð2Þ
I ; F

ð1Þ
I þ F

ð2Þ
I ¼ 0 ð10Þ

The modified displacement approximation in �1 has
the form

uhi ðx; tÞ ¼
½1� RðxÞ�uBEðx; tÞ þ RðxÞuEFGðx; tÞ ;x 2 �I

RðxÞuEFGðx; tÞ ; x 2 �1 ��I

	
ð11Þ

where uhi is the displacement of a point in �1, u
EFG (x,t)

is the EFG displacement given by Eq. (2), and uBE (x,t)
is the BE displacement given by
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uBE ¼
Xne
I¼1

NIðxÞuIðtÞ ð12Þ

where NI (x) is the BE shape function and ne is the

number of nodes in an element.
The ramp function R(x) is equal to the sum of the BE

shape functions associated with interface element nodes
that locate on the interface boundary, i.e.

RðxÞ ¼
Xj
I

NIðxÞ; xI 2 �I ð13Þ

where j is the number of nodes located on �I. According
to the property of the BE shape function, R is equal to
one along �I and vanishes in domains other than �I

RðxÞ ¼ 1 x 2 �I

0 x 2 �1 ��I

	
ð14Þ

The interface shape function can then be developed by

substituting the displacement approximations from Eqs
(2) and (12) into Eq. (11); one obtains

uhi ðx; tÞ ¼
Xn
I¼1

~NIðxÞuiIðtÞ ð15Þ

where the interface shape function ~NIðxÞ reads

~NIðxÞ ¼
½1� RðxÞ�NIðxÞ þ RðxÞ�IðxÞ xI 2 �I

RðxÞ�IðxÞ xI 2 �1 ��I

	
ð16Þ

The derivative of the interface shape function is

~NI;iðxÞ ¼
½1� RðxÞ�NI;iðxÞ þ R;iðxÞ�IðxÞ þ RðxÞ�I;iðxÞ
�R;iðxÞNIðxÞ xI 2 �I

R;iðxÞ�IðxÞ þ RðxÞ�I;iðxÞ xI 2 �1 ��I

8<:
ð17Þ

The approximation based on the above interface

shape function is compatible and reproduces the linear
field exactly [9]. The system equations of the BE sub-
domain and the EFG subdomain can thus be assembled

together.

2.4. Numerical example

The current approach is applied to investigate the

dynamic response of a halfspace. Its geometry and dis-
cretization are depicted in Fig. 2. In the EFG
subdomain, a perfectly plastic material obeying the

Mohr–Coulomb yielding criterion is assumed. The
necessary material properties are density 	 = 3150 kg/
m3, elastic modulus E = 1.77� 103MPa, Poisson’s ratio
� = 0.25, cohesion C = 12.5MPa, and the internal

friction angle � =10 8. The dilational and shear wave
velocities are c1 = 821m/s and c2 = 474m/s,

Fig. 1. Coupling of an EFGM (�1) and a BEM (�2)

subdomain.

Fig. 2. (a) The geometry and loading situation of the halfspace. (b) The EFG and BE discretizations of the right-hand half of the

problem domain.
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respectively. A transient uniform compressive stress that
is symmetrical about point A is applied on the free
surface of the halfspace. The load is given by q(t) =
68.96H(t�0)MPa, where H is the Heaviside step func-

tion. Since the model is symmetrical about point A, Fig.
2b shows only the right-hand half of the model.

The vertical displacements at points A and B of the

surface are computed using coupled EFG–BE and FE–
BE models, respectively. In the second model, the FE
discretization with bilinear quadrilateral elements is set

to be the same as that of the EFG background mesh in
the first model. The size of the time step for both models
is set to 0.0125 s. Linear as well as nonlinear analyses are
carried out for both models. Note again that in non-

linear analysis, elastoplastic effects are restricted only in
the EFG or FE domain. Computational results are
depicted in Fig. 3. The nonlinear effect in point A is

more significant compared with that in point B. Excel-
lent agreement of the results obtained by both numerical
methods is recognized. The current Dmax = 1.2 in the

EFG domain seems absolutely sufficient for the com-
putation. Using a Pentium 4 running at 2.8GHz with
1 GB RAM, the CPU time of the coupled EFG–BE

method with Dmax = 1.2 is around 10% less than that of
the coupled FE–BE method in the nonlinear analysis.

3. Conclusions

A coupled EFGM–BEM approach is proposed to
study the dynamic response of a halfspace under tran-

sient loads. Nonlinear effects assumed to occur in the
EFG domain are included in the analysis. Transient
boundary elements are used to ensure that the radiation

of waves to the infinity is taken into account. A rela-
tively small Dmax in the EFG domain leads to sufficient
accuracy. The computational effort with such a Dmax in
the current approach is less than that of the conven-

tional coupled BE–FE method. The coupled EFGM–
BEM approach has the potential to investigate complex
soil–structure interactions with local nonlinearities.
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Fig. 3. Computational results from the current coupled EFGM–BEM approach in comparison with those from the conventional

coupled FEM–BEM approach.
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