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Abstract

Two new linear contact detection algorithms are developed. The first algorithm is suitable for particles of near
spherical shape and near constant size. The second algorithm is suitable for particles of near spherical shape greatly

differing in size. Both algorithms are insensitive to packing density in terms of CPU and random access memory (RAM)
requirements. The data structure is very simple and RAM requirements are small enabling theoretically billions of
particles to be addressed on a desktop machine.
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1. Introduction

Large discrete element systems usually comprise mil-

lions of discrete elements [1,2,3]. However, there are
systems where the physics of the problem requires bil-
lions of discrete elements [4]. In addition, although very

often discrete elements may be of very simple shape,
such as spherical discrete elements, most often they vary
in size considerably with a variation of 1 to 100 not

being unusual.
In other words, to move from a system with one

million particles to one with one billion particles, con-

tact detection [5,6,7,8] must be handled efficiently by
minimizing the RAM requirements. Also, the size dis-
tribution of the particles should be taken into account in
the contact detection algorithm while the CPU time is

minimized and efficiency of the algorithm is made
independent of spatial distribution of discrete elements.
One could argue that nobinary search (NBS) and C-

GRID algorithms [9,10] fulfil all of these criteria, with
C-GRID algorithm also taking into account the shape
of discrete elements. Unfortunatelly, this is not the case.

In our quest for ever faster, simpler, more robust solu-
tions, almost problem-specific solutions are needed in
order to arrive at the most efficient data structure for a

given problem. Thus, in this paper a robust solution for
spherical particles of the same size is proposed in the
form of a Munjiza–Rougier (MR) contact detection
algorithm and this is combined with a robust solution

for spherical particles of different size – multistep

Munjiza–Rougier (MMR) contact detection algorithm.
A short summary of both algorithms is provided in this
paper, while the detailed description is published in a

journal paper.

2. MR contact detection algorithm

The MR contact detection algorithm comprises of
three parts:

(1) mapping of discrete elements onto identical cells;
(2) sorting of discrete elements according to the cell to

which they are mapped;
(3) searching the sorted list of discrete elements for

contacts.
The MR contact detection algorithm is based on the

assumption that all the discrete elements in the system

can be approximated by a sphere of diameter, d, which is
obtained from the size of the largest discrete element in
the system. The entire space is subdivided into identical

cubical cells of size d with each cell being identified by a
triplet of integer numbers (ix, iy, iz). The mapping of the
set of spherical bounding boxes onto the set of cells is

defined in such a way that each discrete element is
assigned to one and only one cell. Representation of the
mapping is achieved through using a double connected
closed linked list of bounding boxes. In order for the list

to represent the spatial distribution of the bounding
boxes, the list is sorted according to a criterion that has
spatial meaning. This is done using a novel MR-linear

sort algorithm. The MR-linear sort algorithm is based*Corresponding author. E-mail: a.munjiza@gmul.ac.uk
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on the assumptions that no discrete element can move
more than the size of a single cell in a given time step.

This is a reasonable assumption as it is impossible for a
given discrete element to move such a great distance
within a single time step. The MR-linear sort algorithm

takes advantage of the fact that the list is nearly sorted.
The list is parsed starting from the list head (LH), which
has integerized coordinates (0, 0, 0), and each bounding

box is checked against its previous one. If the bounding
box is greater than its previous one, then no change is
needed. The parsing of the list continues until a
bounding box that is smaller than its previous one is

found. When this happens, the current bounding box
needs to be relocated into the appropriate place in the
list. To be able to easily move such a bounding box, a 3

by 3 matrix, A, of pointers to the bounding boxes
immediately before each of the neighbouring cells of the
current bounding box is used, i.e. the biggest bounding

box in the list that is smaller than the neighbouring cell
under consideration, see Fig. 1. The list is parsed only
once and all the pointers are advanced forward only.

From this it follows that the theoretical CPU time for
the MR-linear sort algorithm is given by:

T / N ð1Þ

Detection of contact is done by checking all the dis-
crete elements mapped to a particular cell against all the

discrete elements in neighbouring cells, because only
discrete elements from neighbouring cells can touch each
other. To avoid repetition in the contact detection pro-

cess, a contact mask is used for each central cell. The
contact mask is divided into two rows (in 2D). Since the
bounding boxes in the list are ordered, for each central

cell and each row there is a beginning target bounding
box and an ending target bounding box. In 3D space,
the situation is similar, except that in this case instead of
two rows in the contact mask there are five rows. The

solution to the contact detection problem is therefore

reduced to parsing the bounding boxes between begin-
ning and ending boxes. As the list is parsed only once

and all the pointers are advanced only forward, it fol-
lows that the theoretical CPU time for the MR-linear
search algorithm is given by:

T / N ð2Þ

3. Multistep linear search algorithm (MMR)

The major drawback of the MR algorithm is the fact
that all discrete elements are represented with bounding
boxes of the same size. In addition, the diameter of the

bounding box is such that the largest discrete element
comprising the system is contained within a bounding
box. The result of this is that the contacts are over-

reported, i.e. MR algorithm reports a large number of
contacts between small particles although these particles
may be relatively far from each other and, therefore, not

in contact. Due to this the performance of the algorithm
deteriates with the square of the ratio between the size of
the largest and smallest particle. The basic idea of the
multistep-MR (MMR) algorithm is relatively simple and

involves dividing particles into groups according to size:

Group 0: Particles represented by bounding box of size
d0 = d

Group 1: Particles represented by bounding box of size
d1 = d/�; �>1

Group 2: Particles represented by bounding box of size

d2 = d/�2; �>1

Group 3: Particles represented by bounding box of size
d3 = d/�3; �>1

...

Group n: Particles represented by bounding box of size
dn = d/�n; �>1

(3)

MMR is implemented in n steps:
STEP 0: Initially all the particles are represented by

the bounding box associated with group 0. All the

bounding boxes are mapped onto the cells. It is worth
mentioning that the size of the cells is equal to the size of
the bounding box, i.e. d0. Contact detection is performed

using MR procedures in a usual way. However, separate
lists are assembled for particles from group 0 and all
other particles and contact search is performed for
contact between particles from group 0 and particles

from all other groups.
STEP 1: Particles of group 0 are first removed from

the system. All the remaining particles are then repre-

sented by the bounding box of size d1 and contact

Fig 1. Relationship between matrix A and bounding boxes in

neighbouring cells.
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detection is performed in a usual way, except that a
separate list for particles of group 1 is kept and a search

only performed for contacts between particles from
group 1 and all other remaining particles.

STEP i: Analogy to step 1 is employed.

STEP n: During execution of step n only particles
from group n remain in the system. The key character-
istic of the MMR algorithm described above is that it

uses MR algorithm to detect contacts between particles
of different sizes. The ratio between the smaller and the
largest particle depends on the total number of steps n
and parameter � and is given by

dmax

dmin
¼ �n for say � ¼ 2 in 10 steps

dmax

dmin
¼ 210 is obtained:

ð4Þ

Random access memory (RAM) requirements of
MMR are identical to RAM requirements of MR con-
tact detection algorithm:

in 2D: M = 2N integer numbers
(two pointers per discrete element); (5)

in 3D: M = 2N integer numbers
(two pointers per discrete element);

in n-dimensional space:

M = 2N integer numbers
(two pointers per discrete element);

An important property of both MMR contact detec-
tion algorithm is that neither memory nor CPU
requirements are a function of spatial distribution of

discrete elements, thus the algorithm performs well for
both loose and dense packs.

4. Numerical experiments

In order to demonstrate the above properties of MR
and MMR-linear contact detection algorithms a set of
numerical experiments on systems consisting of N dis-

crete elements all of either constant diameter d (Fig. 2)
or varying diameter that changes from 1 to 1/32
according to a uniform (linear) size distribution is per-

formed. The particles are placed randomly inside a cube-
shaped space in such a way that a relatively dense pack
is obtained without particles overlapping each other.

The cumulative CPU times for all ten contact detec-
tions as a function of the total number of discrete
elements comprising the problem are recorded. First, the
problem is run with all particles being of the same dia-

meter d = 1. The CPU time as function of number of
particles is shown in Fig. 3. The results shown are
obtained by changing N from N = 8000 to N =

5 000 211. It is worth noting that the total CPU time is

proportional to N. This is because both search and sort
algorithms have linear CPU time requirements.
The same problem is repeated with particles being of

diameter varying from d = 1 to d = 1/32 and obeying
uniform size distribution. For each problem, contact
detection is repeated ten times and the cumulative CPU

times for all ten contact detections as a function of the
total number of discrete elements comprising the pro-
blem are recorded. The CPU time as a function of

number of particles is shown in Fig. 4.

Fig. 2. Initial pack configuration.

Fig. 3. CPU time as a function of the number of particles. MR

contact detection comprising of MR sort followed by MR

search.

Fig. 4. CPU time as a function of the number of particles –

MMR contact detection algorithm, uniform size distribution.
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5. Conclusion

The MR-linear contact detection algorithm presented
in this paper belongs to the category of so-called linear
contact detection algorithms. These include NBS and C-

GRID algorithms. Unlike the NBS algorithm, in the
MR-linear contact detection algorithm the data struc-
ture is constantly available. In the NBS algorithm the

data structure is rebuilt each time step. With the MR-
linear contact detection algorithm the data structure is
only modified each time step. Thus, the MR-linear
contact detection algorithm has all the advantages of a

binary tree based algorithm. In addition, it has much
better performance, as demonstrated by the examples
shown in this paper. Total detection time for the algo-

rithm does not depend on packing density, a result
confirmed by both theoretical investigations and
numerical experiments. On the other hand, the rela-

tionship between the total detection time and the total
number of discrete elements comprising the problem is
linear, again a result confirmed by both theoretical

investigations and numerical experiments. Memory
requirements of the algorithm are insignificant and do
not change at all with change in packing density.
The multi-step MR contact detection algorithm pre-

sented in this paper is yet another example of so-called
linear contact detection algorithms. Unlike the MR
contact detection algorithm, which is suitable for sys-

tems comprising particles of similar size, the multistep
algorithm presented in this paper is suitable for systems
comprising particles of greatly different sizes. The RAM

requirements are independent of size distribution of the
pack and are the same as those for the MR algorithm.
However, CPU requirements depend on the number of
steps and size distribution. The upper limit for CPU time

of the n-step algorithm (the worst case scenario) is n-
multiple of CPU time for the single size MR algorithm.
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