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Abstract

We present a fast algorithm, called the fast Fourier transform on multipoles (FFTM) method, for accelerating the
boundary element method. The algorithm employs the multipole and local expansions to approximate far-field

potentials and exploits the discrete convolution nature of the multipole to local translation operator to accelerate the
potential evaluation process. The method is illustrated with a three-dimensional acoustics scattering problem governed
by the Helmholtz equation. It is shown that the method has approximately linear computational complexity and it

achieves accurate results with a relatively low order of expansion.
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1. Introduction

The boundary element method (BEM) is an effective
numerical method for solving acoustics problems gov-

erned by the Helmholtz equation. It is particularly
suitable for infinite domain problems, since no artificial
truncation of domain and specification of boundary

conditions at infinity are required. However, the con-
ventional BEM generates a dense linear system, which
requires O(N3) and O(N2) operations when solved using
Gaussian elimination and iterative methods (such as

generalized minimal residuals (GMRES), respectively,
where N is the number of unknowns in the problem. The
computational requirements become prohibitively large

when the problem size N increases to hundreds of
thousands.
To improve the computation speed, numerous fast

algorithms have been developed. The fast multipole
method (FMM) is one of the most widely implemented
algorithms [1–4]. Another group of fast methods utilizes
the fast Fourier transform (FFT) to accelerate the

matrix–vector product operation. They include the
particle-mesh-based approach [5], the precorrected FFT
method [6], and a variant of the latter [7].

In this paper, we present an alternative fast algorithm

based on an important observation that the multipole-

to-local expansions translation operator in the potential
evaluation process can be expressed as a series of dis-
crete convolutions of the multipole moments with their

associated spherical harmonics functions. FFT algo-
rithms can be employed to evaluate these discrete
convolutions rapidly. We refer to this new algorithm as

the fast Fourier transform on multipoles (FFTM)
method. This algorithm has been applied to solve the
Laplace equation in electrostatic analysis [8]. Here, we
will demonstrate this method for solving the Helmholtz

equation.

2. Formulation

We consider the Helmholtz equation for a complex
potential  (x) given by

r2 ðxÞ þ k2 ¼ 0; x 2 � ð1Þ

where k is the wavenumber. The domain of interest � is

unbounded and the solution has to satisfy the Som-
merfeld radiation condition
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where k�k denotes the Euclidean norm and i ¼
ffiffiffiffiffiffiffi
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The boundary integral equation for this problem is given

by

�ðxÞ ðxÞ ¼
Z
�

@ ðx0Þ
@n

Gðx; x0Þ �  ðx0Þ @Gðx; x
0Þ

@n

� �
d�ðx0Þ

ð3Þ

where x and x0 denote the field and source points,
respectively, and �(x) is generally known as the jump
term, which arises when x is moved to the boundary and

is dependent on the geometry of the boundary at x. The
fundamental solution G(x,x0) is given by

Gðx; x0Þ ¼ eik x�x0j j

4� x� x0k k ð4Þ

for the three-dimensional case.
The boundary element method divides the boundary

� into small elements and approximates the field vari-

ables in terms of nodal variables to give a dense linear
system of equations.

A~X ¼ ~B ð5Þ

where A is a fully populated N�N coefficient matrix
and ~X and ~B are N� 1 column vectors with ~X containing
the unknown variables. The system of equations is

solved using iterative methods (such as GMRES), and

the FFTM algorithm is applied in the inner loop to

speed up the matrix–vector multiplication by providing
a sparse representation of A. This consists of four steps,
as illustrated in Fig. 1.

2.1. Step 1: spatial discretization

This step divides a rectangular volume that contains
all the elements into many smaller cells and allocates the
elements among the cells. The aim is to identify closely

packed elements that can be approximated by multipole
moments and to separate the ‘near’ neighboring ele-
ments and the ‘distant’ elements.

2.2. Step 2: conversion of clusters of elements into

multipole moments

The operator, denoted by Q2M, converts a cluster of

nq elements in a cell to an equivalent set of multipoles at
the centre of the cell:

Mm
n ¼

Xnq
i¼1

Z
�e

fð	i; �i; 
iÞjnðk	iÞY�mn ð�i; 
iÞd� ð6Þ

where f(	,�,
) is the source distribution on each ele-
ment, jn(kr) is the Bessel function of the first kind that

Fig. 1. Two-dimensional pictorial representation of the FFTM algorithm. Step 1: division of problem domain into many smaller cells

and allocation of elements. Step 2: computation of multipole momentsM for all cells. Step 3: evaluation of local expansion coefficients

L at cell centers by discrete convolutions via FFT. Step 4: for each cell, computation of potentials at nodal locations using L, which

accounts for effects from ‘distant’ elements, and addition of the ‘near’ source contributions directly.
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satisfies the Sommerfeld condition, and Y�mn ð�; �Þ is the
spherical harmonic of degree n and order m.

2.3. Step 3: evaluation of local expansion coefficients due

to multipole moments

An intermediate set of local expansion coefficients are

obtained at the center of all cells by

Lt
s ¼

X1
n¼0

Xa
m¼�n

Tt;m
s;n M

m
n ð7Þ

where Tt;m
s;n is the transfer function given by

Tt;m
s;n ¼

X1
a¼0

Xa
b¼�a

�bmt
ans haðkrÞYb

að�; �Þ ð8Þ

where �bmt
ans is a coefficient related to the Wigner 3-j

symbols, and a set of recurrence formulae have been
derived to evaluate them efficiently [9].
The translation formula for multipole expansions

(truncated to order p) to local expansions for the entire
grid can be written as a series of three-dimensional dis-
crete convolutions:

Lt
sðx; y; zÞ 	

Xp
n¼0

Xn
m¼�n

X
x0

X
y0

X
z0

Tt;m
s;n ðx� x0; y� y0;

"

z� z0ÞMm
n ðx0; y0; z0Þ

#
ð9Þ

where the indices (x, y, z), and (x0,y0,z0) denote the dis-
crete cell center locations of the field points and multipole
moments. Due to the regular spacing of the cell centers,
the local expansion coefficients can be evaluated rapidly

all at once using FFT algorithms. To evaluate the

potential in a given cell, the effect of the multipole
moments from its neighbors are often inaccurate. We

overcome this problem by performing a local correction,
which involves (i) removing the inaccurate contributions
from the ‘near’ multipole moments by setting

Tt;m
s;n ðx� x0; y� y0; z� z0Þ ¼ 0;

for x� x0j j; y� y0j j and z� z0j j � D ð10Þ

where D corresponds to the layers of cells that are con-

sidered ‘near’, and (ii) replacing these erroneous results
by those computed exactly as in the direct approach.

2.4. Step 4: evaluation of the potentials at nodal locations

The potentials at element nodal locations y = (r, �, �)
due to ‘distant’ sources is computed using the L2P

translation operator given by

 ðyÞ ¼
Xp
s¼0

Xs
t¼�s

Lt
s jsðkrÞYt

sð�; �Þ ð11Þ

The ‘near’ contributions are added directly to the nodal
locations, denoted by Q2P.

The computation time and memory storage needed
for ‘cell-centered’ operations, Q2M, L2P, and Q2P

scales linearly with N. For FFT operations, the storage

and time needed are O(Nc) and O(Nc log Nc), respec-
tively, where Nc is the number of cells. Overall, the
algorithm has near-linear complexity: O(N), O(Nc), and
O(Nc log Nc) for large N and Nc.

3. Numerical example

In this example, we study the scattering pattern of a

sound-hard cylinder submerged in water subjected to a

Fig. 2. (a) Schematic diagram for the scattering cylinder example in underwater acoustics analysis. (b) Element mesh of the cylinder

with 2842 nodes and 5680 elements.
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point incident sound wave of unit magnitude at a fre-
quency of 2 kHz. Fig. 2 shows the schematic diagram

and the element mesh of the problem.
To study the accuracy of the method, we obtain the

error in the L2 norm for the pressure distribution as

given by

Error ¼
PN

i¼1 PBEM
i � PFFTM

i

�� ��2PN
i¼1 PBEM

i

�� ��2
 !1

2

ð12Þ

where PBEM
i and PFFTM

i are ith nodal surface pressure of
the standard BEM and the FFTM schemes, respectively.
The analysis was done using the first- (M = 27) and
second- (M = 125) layer stencils for the ‘near’ cells, and

the error plots are depicted in Fig. 3.
The FFTM was found to give accurate solutions using

a relatively low order of expansion. From the plots, it is

observed that the FFTM schemes can achieve an error
of less than 1.0% if p� (ka + 2) and an error of less
than 0.1% if p� (ka + 3). In general, the second-layer

stencil schemes tend to give more accurate results and
have slightly faster convergence rates.

The computation using FFTM is then repeated for

five different incident wave frequencies, ranging from 2
to 10 kHz at an interval of 2 kHz. The corresponding
problem sizes are 2842, 11 362, 25 562, 45 442, and
71 002, respectively, as smaller elements are required to

capture the rapidly oscillating field at a higher fre-
quency. The computational complexity in terms of
memory storage and CPU time is depicted in Fig. 4.

From the plots, we observe that the curves can be

approximated by power functions of the form ANB, with
B ranging from 1.05 to 1.07 for the memory storage

requirement and from 1.14 to 1.24 for the CPU time.
The deviation from linear growth in complexity is
probably due to the presence of O(N log N) complexity

in the FFT operations.

4. Conclusion

An FFTM algorithm has been developed for efficient
solution of the Helmholtz equation. It is demonstrated
that the algorithm can achieve reasonably good accu-

racy with a relatively low order of expansion. This
algorithm is also simple to implement compared with the
more complicated hierarchical structure in the FMM.
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