
Parallel normalized implicit preconditioned conjugate gradient

methods for solving biharmonic equations on symmetric

multiprocessor systems

George A. Gravvanis*, Konstantinos M. Giannoutakis

Department of Electrical and Computer Engineering, School of Engineering, Democritus University of Thrace, GR 67100 Xanthi, Greece

Abstract

A new class of inner–outer iterative procedures in conjunction with conjugate gradient-type schemes based on
normalized approximate factorization procedures for solving sparse linear systems of irregular structure, which are

derived from the finite element method of biharmonic equations in three space variables, is introduced. Normalized
implicit preconditioned conjugate gradient-type methods are presented, for the efficient solution of linear sparse sys-
tems. Applications of the method on a three-dimensional biharmonic problem are discussed and numerical results are
given. The parallel implementation on symmetric multiprocessor systems of the forward and backward substitution for

the decomposition factors is also investigated.

Keywords: Biharmonic equations; Finite element method; Approximate factorization procedures; Preconditioning;

Parallel computations

1. Introduction

Many engineering and scientific problems are descri-

bed by sparse linear systems of algebraic equations
derived from the finite element (FE) discretization of
biharmonic equations, which occur in continuum

mechanics in both linear elasticity and in fluid flow.
Methods for solving biharmonic equations on a rec-

tangular region have been discussed by many
researchers [1–8], and several iterative methods have

been examined either considering the biharmonic equa-
tion as a ‘coupled equation approach’ (pair of Poisson
equations) or by applying iterative schemes directly to

the fourth-order equation.
A new class of inner–outer iterative procedures in

conjunction with normalized implicit conjugate gra-

dient-type schemes based on normalized approximate
factorization procedures for solving sparse linear sys-
tems of irregular structure, which are derived from the

finite element method of biharmonic equations in three
space variables, is introduced. The parallel imple-
mentation of the dominant computational part, which
is the forward and backward substitution of the

decomposition factors, is also investigated for the effi-
cient solution of sparse linear systems.
Application of the proposed method on a three-

dimensional biharmonic problem is discussed and
numerical results are given. The improvement of the
proposed method is exhibited from its parallel execution

results when implementing the forward and backward
substitutions for the decomposition factors.

2. Approximate factorization procedures

Let us consider the following biharmonic equation in
three space variables, viz.,

�2uðx; y; zÞ ¼ fðx; y; zÞ; ðx; y; zÞ 2 R ð1aÞ
u0 ¼ 0 and @uðx; y; zÞ=@� ¼ g2ðx; y; zÞ; ðx; y; zÞ 2 @R

ð1bÞ

where R is a bounded domain, @R is the boundary of R,
and f is sufficiently smooth functions on R. Our
approach is to consider the ‘coupled equation

approach’, viz. r4 = r2r2, by solving

cr2u ¼ v and r2v ¼ cf ð2Þ*Corresponding author. E-mail: ggravvan@ee.duth.gr

1120

2005 Elsevier Ltd. All rights reserved.

Computational Fluid and Solid Mechanics 2005

K.J. Bathe (Editor)

where two discrete Poisson equations, using a FE
approximation scheme, must be solved, usually by an

‘inner–outer’ iteration method.
Let us consider the finite element linear system, i.e.

Au ¼ s ð3Þ

where A is a sparse (n � n) matrix of special structure:

(4)

Let us now assume the normalized approximate factor-

ization such that:

A
 Dr1; r2 T
t
r1 ; r2

Tr1;r2Dr1;r2 ; r1 2 ½1; � � � ;m� 1Þ;
r2 2 ½1; � � � ; p� 1Þ ð5Þ

where r1, r2 are the so-called ‘fill-in’ parameters, i.e. the
number of outermost off-diagonal entries retained in the
semi-bandwidths m and p respectively, Dr1,r2

is a diag-

onal matrix, viz.,

Dr1 ;r2 	 diag d1; � � � ; dm�1 ..
.
dm; � � � ; dp�1..

.
dp; � � � ; dn

� 	
ð6Þ

and Tr1,r2
is a sparse upper (with unit diagonal elements)

triangular matrix of the same profile as the coefficient
matrix A, i.e.

(7)

The elements of the decomposition factors were
computed by the finite element approximate normalized

factorization procedure (henceforth called the
FEANOF-3D algorithm) [9]. The memory requirements
of the FEANOF-3D algorithm is
 ðr1 þ r2þ
2‘1 þ 2‘2 þ 4Þn words, while the computational work

required is
 O½ðr1 þ ‘1Þ
2 þ ðr2 þ ‘2Þ2�n multiplicative

operations and n square roots [9].

The computational implementation of the factoriza-
tion procedure requires the coefficient matrix A to be
stored as diagonal, co-diagonals and the V, W sub-

matrices (stored in a band-like scheme, i.e. only ‘1 and ‘2
vector spaces). In this case the submatrix V = (v
,�) is to
be stored such that V = (v
,�),
 2 [1,n � m + 1], � 2
[1,‘2] denotes the elements of the
-th row and (
+ �+
m � 2)-th column of A in its usual arrangement, cf. Eq.
(4). In a similar way, the submatrix W = (w�,�) is to be
stored such that w�,�, � 2 [1,n � p + 1], � 2 [1,‘2]
denotes the elements of the �-th row and (� + � +
p � 2)-th column of A.
The factorization procedure requires the submatrix

H = (hi,j), i 2 [1,r1 + ‘1 � 1], j 2 [1,n � m + 1] of the
matrix Tr1,r2

to be stored such that hi,j (for i � m � 1)
denotes the elements in the i-th row and the (m+ j� 1)-th

column (if j � ‘1) or the elements in the (i + j � ‘1)-th
row and the (m + j � 1)-th column (if ji‘1) while hi,j (for
i > m � 1) denotes the elements in the i-th row and the

(i + j)-th column (if i + j � m + ‘1 � 1) or the elements
in the (2i + j � m � ‘1 + 1)-th row and (i + j)-th
column (if i + jim + ‘1 � 1) of the coefficient matrix A
in its usual arrangment. The submatrix F = (fi,j), i 2
[1, r2 + ‘2 � 1], j 2 [1, n � p+ 1] of the matrix Tr1

,r2 can
be stored such that fi,j (for i � p�1) denotes the elements
in the i-th row and the (p + j � 1)-th column (if j � ‘2)
or the elements in the (i + j � ‘2)-th row and the (p +
j � 1)-th column (if jh‘2) while fi,j (for i > p � 1) denotes
the elements in the i-th row and the (i + j)-th column (if

i + j � p + ‘2 � 1) or the elements in the (2i + j �
p � ‘2 + 1)-th row and (i + j)-th column (if i+jip + ‘2
� 1) of the coefficient matrix A in its usual arrangment.

3. Normalized implicit preconditioned conjugate gradient

methods

The normalized approximate factorization procedures

in conjunction with conjugate gradient-type schemes
yield a class of efficient normalized implicit precondi-
tioned schemes.

The normalized implicit preconditioned conjugate
gradient square (NIPCGS) method can be expressed by
the following compact algorithmic scheme:
Let u0 be an arbitrary initial approximation to the

solution vector u. Then,

set u0 ¼ 0 and e0 ¼ 0 ð8Þ

solve Tt
r1;r2

Tr1;r2

� �
Dr1;r2r0 ¼ D�1r1;r2

ðs� Au0Þ ð9Þ

set �0 ¼ r0 and p0 ¼ ð�0; r0Þ ð10Þ

G.A. Gravvanis, K.M. Giannoutakis / Third MIT Conference on Computational Fluid and Solid Mechanics 1121

Then, for i = 0, 1, . . ., (until convergence) compute the
vectors ui+1, ri+1, �i+1 and the scalar quantities �i, �i+1

as follows:

form qi ¼ A�i; solve Tt
r1;r2

Tr1;r2

� �
Dr1;r2 ti ¼ D�1r1;r2

qi

ð11Þ
calculate �i ¼ pi= �0; tið Þ ð12Þ
compute eiþ1 ¼ ri þ �iei � �iti; di ¼ ri þ �iei þ eiþ1

ð13Þ
and uiþ1 ¼ ui þ �idi; form qi ¼ Adi ð14Þ

solve Tt
r1 ;r2

Tr1;r2

� �
Dr1;r2 ti ¼ D�1r1;r2

qi ð15Þ

compute riþ1 ¼ ri � �iti ð16Þ
set piþ1 ¼ �0; riþ1ð Þ; evaluate �iþ1 ¼ piþ1=pi

ð17Þ
compute �iþ1 ¼ riþ1 þ 2�iþ1eiþ1 þ �2iþ1�i ð18Þ

The normalized implicit preconditioned biconjugate
conjugate gradient-STAB (NIPBICG-STAB) method,
can be stated by the following algorithmic scheme:

Let u0 be an arbitrary initial approximation to the

solution vector u. Then,

set u0 ¼ 0; compute r0 ¼ s� Au0 ð19Þ

set r
0

0 ¼ r0; �0 ¼ � ¼ !0 ¼ 1 and v0 ¼ p0 ¼ 0

ð20Þ

Then, for i = 0, 1, . . ., (until convergence) compute the
vectors ui, ri and the scalar quantities �, �, !i as follows:

calculate �i ¼ r
0

0; ri�1

� �
; and�¼ �i=�i�1

� ��
�=!i�1
� �

ð21Þ
compute pi ¼ ri� 1 þ � pi�1 � !i� 1 vi� 1ð Þ ð22Þ

solve Tt
r1;r2

Tr1;r2

� �
Dr1 ;r2 yi ¼ D�1r1; r2

pi ð23Þ

form vi ¼ Ayi; � ¼ �i= r
0

0; vi

� �
; and xi ¼ ri�1 � �vi

ð24Þ

solve Tt
r1 ;r2

Tr1r2

� �
Dr1;r2 zi ¼ D�1r1;r2

xi ð25Þ

form ti ¼ Azi; solve Tt
r1 ;r2

Tr1;r2

� �
Dr1 ;r2 ti ¼ D�1r1;r2

ti

ð26Þ
set !i ¼ ti ; zið Þ= ti; tið Þ ð27Þ
compute ui ¼ ui�1 þ �yi þ !izi and ri ¼ xi � !iti

ð28Þ

The computational complexity of the NIPCGS

method requires � O[(8‘1 +8‘2 +4r1 +4r2 +15)nmults
+ 8n adds]v operations, while for the NIPBICG-STAB

method requires � O[(10‘1 +10‘2 +6r1 +6r2 +16)n
mults + 6n adds]v operations, where v is the number of

iterations required for the convergence to a pre-
determined tolerance level.
For the parallel exploitation and implementation of

the dominant computational part of the methods
described above, i.e. the forward and backward sub-
stitutions for the Tr1 ;r2 and Tt

r1;r2
matrices, the simulation

software tool environment of Multi-Pascal, [10], has
been utilized, where a time unit of the simulated time is
approximately equivalent to one microsecond of the real
execution time on a general purpose multiprocessor.

The basic statement of the developing environment is
the forall statement that is responsible for process
creation and execution. Furthermore, the balancing of

the workload is succeeded through an increase in gran-
ularity factor for each process (grouping statement),
while the architecture platform is that of a shared

memory system consisting of 512 processors. Let us now
consider one of the backward substitution relations of
the following form:

si ¼ si � gisiþ1 �
Xmþ‘1�1
j¼m

hi; j�mþ1 sj

�
Xiþmþ‘1 �2

j ¼mþ‘1
hi�jþmþ‘1�1;j�mþ1sj

Xpþ‘2 �1
j¼p

fi; j�pþ1sj

�
Xiþpþ‘2 �2

j¼pþ‘2
fi � jþpþ ‘2�1; j�pþ1sj ð29Þ

or equivalently rewritten as:

si ¼ si � gi � siþ1 � z1 � z2 � z3 � z4 ð30Þ

Since z1, z2, z3, z4 can be computed in parallel, then the
sequential part is minimized to a subtraction and a

multiplication [4].

4. Numerical results

Let us consider the following three-dimensional-
model problem:

�2 u x; y; zð Þ ¼ 1; x; y; zð Þ 2 R ð31aÞ

subject to boundary conditions:

u x; y; zð Þ ¼ 0; and @u x; y; zð Þ=@� ¼ 0; x; y; zð Þ 2 @R

ð31bÞ

where � is the Laplacian operator, R is the unity cube
and @R is the boundary of the domain R. The domain
R[@R was covered by a non-overlapping triangular

network, resulting in a hexagonal mesh. The NIPGCGS

G.A. Gravvanis, K.M. Giannoutakis / Third MIT Conference on Computational Fluid and Solid Mechanics1122

and the NIPBICG-STAB methods were terminated

when kui + 1 � uik1 h 10
�6.

Numerical results are presented in Table 1 for the
NIPCGS and the NIPBICG-STAB method applied to

problems (31a)–(31b) in the unit cube for several values
of order n, semi-bandwidths m and p, and the fill-in
parameters r1, r2.
For the parallelization of the forward–backward

substitution of the submatrices Tr1;r2 and Tt
r1;r2

, two

different cases have been considered [4]:
Case 1: The number of processors allocated was free

and selected by the system, while the granularity factor

used was the result of the square root function over the
indices of each forall statement, which is nearly the best
value for grouping according to the theoretical analysis.
Case 2: The granularity factor is the same as in the

previous case, but the number of the processors used is
controlled to achieve better efficiency.
Speedups and processor allocation are given in Table

2 and Table 3 for the Case 1 and Case 2 respectively.
Additionally, speedups and processor allocation are
presented in Fig. 1 and Fig. 2 for the Cases 1 and 2

respectively, while the efficiency and processor allocation
is presented in Fig. 3 for the Case 2.
It is obvious that in the case of a restricted shared

memory architecture concerning the number of pro-

cessors available, the values of the relative speedup and
efficiency are the best possible obtained.
Finally, it should be noted that, the restrictions

imposed by the programming environment used did not
allow us to fully explore cases with larger values of the
order of the sparse linear system (n > 1000).

References

[1] Axelsson O. Notes on the numerical solution of bihar-

monic equation, J Inst Maths Applics 1973;11:213–226.

[2] Ehrlich LW. Solving the biharmonic equation as a cou-

pled finite difference equations, SIAM J Numer Anal

1971;8:278–287.

[3] Gravvanis GA. Explicit preconditioning conjugate gra-

dient schemes for solving biharmonic problems,

Engineering Computations 2000;17:154–165.

[4] Gravvanis GA, Bekakos MP, Efremides OB. Parallel

implicit preconditioned conjugate gradient methods for

solving biharmonic equations, Proc of the 6th Hellenic–

Table 1

The convergence behavior of the NIPCGS and NIPBICG-STAB methods for various values of the parameters n, m, p, r1 and r2

Method n m p r1 = r2 = 1 r1 = r2 = 2 r1 = r2 = 4

NIPCGS

729 10 82 10 10 10

2744 15 197 12 12 12

6859 20 362 12 12 12

13824 25 577 12 12 12

24389 30 842 11 12 12

NIPBICG-STAB

729 10 82 10 10 10

2744 15 197 11 11 11

6859 20 362 11 11 11

13824 25 577 11 11 11

24389 30 842 11 11 11

Table 2

Speedups and processor allocation for Case 1

n m p Procs r1,r2 Speedup

125 6 26 12 1 5.301

2 5.436

4 5.708

343 8 50 19 1 8.562

2 8.683

4 8.907

729 10 82 27 1 12.207

2 12.299

4 12.479

Table 3

Speedups and processor allocation for Case 2

n m p Procs r1,r2 Speedup

125 6 26 3 1 2.731

2 2.749

4 2.787

343 8 50 4 1 3.776

2 3.787

4 3.805

729 10 82 5 1 4.881

2 4.894

4 4.911

G.A. Gravvanis, K.M. Giannoutakis / Third MIT Conference on Computational Fluid and Solid Mechanics 1123

Fig. 1. Speedups and processor allocation for Case 1.

Fig. 2. Speedups and processor allocation for Case 2.

Fig. 3. Efficiency and processor allocation for Case 2.

G.A. Gravvanis, K.M. Giannoutakis / Third MIT Conference on Computational Fluid and Solid Mechanics1124

European Conference on Computer Mathematics and its

Applications, EA Lipitakis, editor, vol. 2, LEA Publishers,

2004, 683–694.

[5] Greenspan D, Schultz D. Fast finite difference solution of

biharmonic boundary value problem, Comm ACM

1972;15:347–350.

[6] Nodera T, Takahashi H. Preconditioned conjugate gra-

dient algorithm for solving biharmonic equations,

Advances in Computer Methods for Partial Differential

Equations IV, R Vichnevetsky, RS Stepleman, editors,

IMACS, 1981.

[7] Smith J. The coupled equation approach to the numerical

solution of the biharmonic equation by finite differences,

SIAM J Numerical Analysis 1968;5:323–339.

[8] Yousif WS, Evans DJ. Explicit block iterative method for

the solution of biharmonic equation, Numerical Methods

for Partial Differential Equations 1993;9:1–12.

[9] Gravvanis GA, Giannoutakis KM. Normalized implicit

preconditioned methods based on normalized finite ele-

ment approximate factorization procedures, Proc of the

3rd MIT Conference on Computational Fluid and Solid

Mechanics, KJ Bathe, editor. Elsevier, Oxford pp. 1115–

1119.

[10] Lester BP. The Art of Parallel Programming, Prentice

Hall, 1993.

G.A. Gravvanis, K.M. Giannoutakis / Third MIT Conference on Computational Fluid and Solid Mechanics 1125

