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Abstract

Normalized implicit preconditioned conjugate gradient-type schemes based on finite element normalized approx-

imate factorization procedures for solving sparse linear systems, which are derived from the finite element method of
partial differential equations in three space variables, are presented. Theoretical estimates on the rate of convergence
and computational complexity of the normalized implicit preconditioned conjugate gradient method are also given. The

application of the proposed method on a characteristic three-dimensional boundary value problem is discussed and
numerical results are given.
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1. Introduction

Let us consider the linear system resulting from the
finite element (FE) discretization of an elliptic boundary
value problem in three dimensions, i.e.

Au ¼ s ð1Þ

where A is a non-singular large sparse symmetric posi-
tive definite, diagonally dominant matrix of irregular
structure (where all the off-center band terms are
grouped in regular bands of width ‘1 and ‘2 at semi-

bandwidths m and p), viz.

(2)

while u is the FE solution and s is a vector, of which the
components result from a combination of source terms

and imposed boundary conditions.
Then, by using normalized implicit preconditioned

methods based on normalized approximate factorization
procedures, the FE solution can be obtained as the limit

of a convergent sequence of vectors {ui+1} generated by
the normalized implicit preconditioned conjugate gra-
dient (NIPCG) method.

Finally, the performance and applicability of the
normalized implicit preconditioned methods are illu-
strated by solving a characteristic elliptic boundary

value problem and numerical results are given.

2. Normalized approximate factorization procedures

Let us now assume the normalized approximate fac-

torization such that:

A 
 Dr1 ;r2 T
t
r1;r2

Tr1 ;r2 Dr1;r2 ; r1 2 ½1 ; . . . ; m� 1Þ;
r2 2 ½1 ; . . . ; p� 1Þ ð3Þ

where r1 and r2 are the ‘fill-in’ parameters, i.e. the
number of outermost off-diagonal entries retained at

semi-bandwidths m and p, Dr1,r2
is a diagonal matrix and

Tr1,r2
is a sparse upper (with unit diagonal elements)*Corresponding author. E-mail: ggravvan@ee.duth.gr
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triangular matrix of the same profile as the coefficient
matrix A.

D r1 ;r2 � diag d 1 ; . . . ; d m � 1
..
.
d m ; . . . ; d p � 1

..

.
d p ; . . . ; d n

� �
;

ð4Þ

(5)

Then, the elements of the decomposition factors Dr1,r2

and Tr1,r2
, were computed by the finite element approx-

imate normalized factorization 3D algorithm
(henceforth called the FEANOF-3D algorithm), and can

be expressed by the following compact algorithmic
scheme:

d1 ¼
ffiffiffiffiffi
a1
p ð6Þ

for i = 2 to m � 1

di ¼ ai � bi � 1=di�1ð Þ2
� �½

ð7Þ

gi�1 ¼ bi�1= di�1dið Þ ð8Þ

By applying the FEANOF-2D algorithm [1] the ele-
ments h�,� of the lower submatrix at semi-bandwidth m
retaining r1 outermost-off diagonal entries, the co-

diagonal elements gi and also the diagonal elements dm,
. . . , dp�1 of the diagonal matrix were obtained.

The equations to determine the elements of Tr1,r2

proved to be non-linear and a simple iterative Picard-

type scheme was used in an inner loop to determine the
values of dp, . . ., dn, as the direct solution of these
equations proved to be intractable [1].

Find the first non-zero element of submatrix W�,� of
the (p+j�1)th column of A (the procedure IXNOS can
be used [1]).

for j = 1 to n � m + 1

if j � p + m < ‘2 then

f�j ¼ w��= dkdmþj�1
� �

ð9Þ

else

f�þ‘2�jþp�m;j�pþm ¼ w��= dkdmþj�1
� �

ð10Þ

if j � p + m � r2 + ‘2 � 2 then

if j � p + m � ‘2 then

fi;j�pþm ¼ �di�1fi�1;j�pþm ð11Þ

if i < j � p + m + 1 then

fi;j�pþm ¼ fi;j�pþm � wi;j�pþm�iþ1= didmþj�1
� �

ð12Þ

for i = � + 1, . . . , r2 + j � p + m � 1

else

fi;j�pþm ¼ �giþj�pþm�‘2�1fi�1;j�pþm ð13Þ

if i � ‘2 then

fi;j�pþm ¼ fi;j�pþm � wiþj�pþm�‘2;‘2�iþ1= didmþj�1
� �

ð14Þ

for i = �+ ‘2 � j + p � m+1, . . . , r2 + ‘2 � j + p

� m + 1

if j � p + m > ‘2 then

if i � p+ 2‘2 � j+ p �m and j � p+ m � ‘2+2 then

fi;j�pþm ¼ �giþj�pþm�‘2�1 fi�1;j�pþm

�
Xi�1
k¼1

hk�iþr2þ‘2 ;iþj�pþm�r2�‘2 fk;j�pþm

ð15Þ
else

fi;j�pþm ¼ �giþj�pþm�‘2�1 fi�1;j�pþm

�
Xi�1
k¼1

hkþj�pþm�‘2 ;iþj�pþm�r2�‘2 fk;j�pþm

ð16Þ

then, if i � ‘2

fi;j�pþm ¼ fi;j�pþmþwiþj�pþm�‘2 ; ‘2�iþ1= diþj�pþm�‘2dmþj�1Þ
�

ð17Þ

for either i = r2 + ‘2 � j + 1 + p � m, . . ., r2 + ‘2 � 1
and � < p

or i = � + ‘2 � j + p � m + 1, . . ., r2 + ‘2 � 1 and �
� p, with j < r2 + ‘2 � 1

or i = �+ ‘2 � j + p � m + 1, . . ., r2 + ‘2 � 1 for all j
� p + m � r2 + ‘2 � 1.

Then, for i = r2

if j � p + m � ‘2 then

dmþj�1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wmþj�1
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

Xr1þ‘1�1
k¼1

h2k;j þ
Xr2þj�pþm�1

k¼1
f 2k;j�pþm

vuut,
ð18Þ

else
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dmþj�1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wmþj�1
p

, ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

Xr1þ‘1�1
k¼1

h2k; jþ
Xr2þ‘2�1
k¼1

f2k; j�pþm

vuut
ð19Þ

The memory requirements of the FEANOF-3D

algorithm is 
 (r1+r2+2‘1+2‘2+4)n words, while
the computational work required is

 O r1 þ ‘1ð Þ2þ r2 þ ‘2ð Þ2

h i
n multiplicative operations

and n square roots.
It should be noted that if the width parameter ‘2 = 0,

then the algorithm reduces to one for solving sparse

linear systems which are encountered in solving 2D
boundary value problems by the finite element method
[1]. If the width-parameters ‘1 = 1 and ‘2 = 1, then the
algorithm reduces to one for solving sparse linear sys-

tems which are encountered in solving 3D boundary
value problems by the finite difference method [2]. If the
width parameters ‘1 = 1 and ‘2 = 0, then the algorithm

reduces to one for solving sparse linear systems which
are encountered in solving 2D boundary value problems
by the finite difference method [3].

3. Normalized implicit preconditioned conjugate gradient

methods

In this section we present normalized implicit pre-

conditioned conjugate gradient methods, based on
normalized approximate factorization procedures and
theoretical estimates on the rate of convergence and the

computational complexity are derived [2,4].
The normalized implicit preconditioned conjugate

gradient (NIPCG) method for solving linear systems can
be stated as follows:

Let u0 be an arbitrary initial approximation to the
solution vector u. Then,

form ~r0 ¼ s� Au0 ð20Þ

solve Tt
r1; r2

Tr1; r2

� �
Dr1; r2 r

�
0 ¼ D�1r1 ; r2

~r0 ð21Þ

set ~�0¼ r�0 ð22Þ

Then, for i = 0, 1, . . ., (until convergence) compute the
vectors ui+1, ~ri+1, ~�i+1 and the scalar quantities ãi, ~�i+1

as follows:

form qi ¼ A ~�i; and pi ¼ ~ri; r
�
i

� �
; when ði ¼ 0Þ

ð23Þ
evaluate ~ai ¼ pi= ~�i; qið Þ; uiþ1 ¼ uiþ ~ai ~�i; and

~riþ1 ¼ ~ri � ~ai ~qi ð24Þ

Then; solve Tt
r1; r2

Tr1; r2

� �
Dr1; r2 r

�
iþ 1 ¼ D�1r1; r2

~riþ 1

ð25Þ

compute piþ 1 ¼ ~riþ 1; r
�
iþ 1

� �
; �iþ 1 ¼ piþ 1

.
pi and

~�iþ 1 ¼ r�iþ 1 þ ~�iþ 1 ~�i ð26Þ

The normalized implicit preconditioned conjugate
gradient square (NIPCGS) method and the normalized
implicit preconditioned biconjugate conjugate gradient-

STAB (NIPBICG-STAB) method can be similarly
derived [2].
The basic properties of the NIPCG method, Notay

[5], can be stated by the following theorem:

Theorem 3.1: Let A be a positive definite matrix, s some

given vector and u = A�1s the solution to the linear
system (1). Let us also consider that u(k) is the solution
vector after k iterations of the NIPCG method [5] then

we have

u� uðkÞ
�� ��

B
¼ min

Pk

Pk ð�r1 ;r2Þ u� uð0Þ
� ���� ���

B
ð27Þ

and
u� uðkÞ
�� ��

B

u� uð0Þk kB
¼ min

Pk

max
x2½�min;�max�

Pkj ðxÞj; ð28Þ

where � r1 ;r2 ¼ Dr1 ;r2 T
t
r1 ;r2

Tr1 ;r2 Dr1;r2

� ��1
A ð29Þ

while Pk is the set of polynomials of degree k such that
Pk(0) = 1, and kxkB = (x, B)1/2x.
Since e(k) = u�u(k), it can be proved [5] that:

eðkÞ
�� ��

B
� min

Pk

max
x2½�min ;�max�

jPk ðxÞj eð0Þ
�� ��

B
ð30Þ

where the polynomial Pk(x) can be defined by the Che-
byshev polynomials in order to derive an estimate of the

number of iterations required for the interval [�min,
�max]. Let us assume through this section that:

� r1 ; r2

�� �� 	 � r1 ;r2

�� ��
1
¼ max

j2½1;n�

Xn
i¼ 1

� r1 ;r2

� �
i ; j

��� ���( )
ð31Þ

The following Lemma allows us to establish bounds for

the preconditioning matrix �r1,r2
.

Lemma 3.1: Let �r1,r2
= (Dr1,r2

Tt
r1,r2

Tr1,r2
Dr1,r2

)�1 A be
the preconditioning matrix of the NIPCG iterative
scheme. Let m and p be the semi-bandwidths of the

coefficient matrix A, ‘1 and ‘2 be the width-parameters at
semi-bandwidth m and p respectively and r1, r2 be the
‘fill-in’ parameters. Then

1

�0

1

1þ C
ðr1 ;r2 ;‘1 ;‘2Þ
1

� �r1 ;r2

�� �� � �1þ 2C
ð�;m;p;r1 ;r2 ;‘1 ;‘2Þ
2 ð32Þ

where C
ð�; m;p;r1;r2 ;‘1;‘2Þ
2 is a constant depending on �, m,

p, r1, r2, ‘1, ‘2 and strictly greater than unity, C1
(r1,r2,‘1,‘2)

is a constant depending on r1, r2 and independent of the
mesh-size and �0 = M2

0/n
2, with M0 the M-condition

number of the matrix A = DTtTD.
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Let us consider the positive numbers �1 and �2, where
[�1, �2] � [�min, �max], such that:

�2 � �1þ 2C
ð�;m;p;r1;r2;‘1;‘2Þ
2 and

�1 �
1

�� �0

1

1þ C
ðr1 ;r2 ;‘1 ;‘2Þ
1

ð33Þ

Then assuming that a uniform volumetric network of
mesh size h is superimposed over a cube, similarly it can
be proved that [2]:

0h �r1; r2

�� �� � �1þ 2��
mþ ‘1 � 2

r1 þ ‘1 � 1
þ pþ ‘2 � 2

r2 þ ‘2 � 1
� 1

� �
þ q

ð34Þ

hence

�2 ¼ �max ð� r1;r2Þ � � r1;r2

�� �� � �1
þ2�

mþ ‘1 � 2

r1 þ ‘1 � 1
þ pþ ‘2 � 2

r2 þ ‘2 � 1

� �
þ q ð35Þ

which can be equivalently written as:

�2 ¼ O b r1 þ ‘1 � 1ð Þ�1 mþ ‘1 � 2ð Þ

þ r2 þ ‘2 � 1ð Þ�1 pþ ‘2 � 2ð Þc ð36Þ

It should be noted that the behavior of the values of

C
ðr1 ;r2 ;‘1;‘2Þ
1 and C

ð�;m;p;r1 ;r2 ;‘1;‘2Þ
2 are closely related to the

eigenvalue distribution of the 3D-model problem (the
Laplace equation in the unit cube with zero boundary
values) as r1 ! m � 1 and r2 ! p � 1.

Then the following Theorem on the rate of con-
vergence and computational complexity of the NIPCG
method can be stated:

Theorem 3.2: Let be the �r1,r2
= ðDr1;r2 Tt

r1;r2
Tr1;r2

Dr1;r2Þ
�1 A preconditioning matrix of the NIPCG itera-

tive scheme, where r1 and r2 are the ‘fill-in’ parameters.

Suppose there exist positive numbers �1 and �2, where �1
is independent of the mesh size and �2 = O½(r1 + ‘1 �
1)�1 (m + ‘1 � 2) + (r2 + ‘2 � 1)�1 (p + ‘2 � 2)�. Then
the number of iterations of the NIPCG method required

to reduce the L/-norm of the error by a factor ">0 is
given by:

v ¼ O r1 þ ‘1 � 1ð Þ�1 mþ ‘1 � 2ð Þ þ r2 þ ‘2 � 1ð Þ�1
nh

pþ ‘2 � 2ð Þg1=2 log "�1
i

ð37Þ

Furthermore, the computational complexity for the

computation of the solution u� is given by:

O h�3 r1 þ ‘1ð Þ r2 þ ‘2ð Þ r1 þ ‘1 � 1ð Þ�1 mþ ‘1 � 2ð Þþ
nh

r2 þ ‘2 � 1ð Þ�1 pþ ‘2 � 2ð Þg1=2 log "�1� ð38Þ

Additionally, it has been observed that the NIPCGS
and NIPBICG-STAB method converges roughly twice
as fast as the NIPCG method.

4. Numerical results

In this section we examine the applicability and
effectiveness of the proposed schemes for solving char-
acteristic 3D-boundary value problems.

Let us consider a 3D-boundary value problem with
Dirichlet boundary conditions:

uxx þ uyy þ uzz þ u ¼ F; ðx; y; zÞ 2 R ð39Þ

where R is the unit cube. The domain is covered by a
non-overlapping triangular network resulting in a hex-
agonal mesh. The right-hand side vector of the system

(1) was computed as the product of the matrix A by the
solution vector, with its components equal to unity. The
iterative process was terminated when krik1 h10�6.
The convergence behavior of the NIPCGS and NIP-

BICG-STAB methods for several values of the order n,
semi-bandwidths m, p and the ‘fill-in’ parameters r1, r2 is
presented in Table 1. The performance of the FEANOF-

3D algorithm and of the NIPCGS and NIPBICG-STAB
method (given in h:m:s.h) for various values of the ‘fill-
in’ parameters r1, r2 is presented in Table 2.

It should be mentioned that the theoretical results

Table 1

The convergence behavior of the NIPCGS and NIPBICG-

STAB method

Method n m p r1,r2

1 2 4

NIPCGS 729 10 82 5 5 5

2744 15 197 6 6 6

6859 20 362 6 6 6

13824 25 577 6 6 6

24389 30 842 6 6 6

59319 40 1522 6 6 6

205379 60 3482 6 6 6

NIPBICG-STAB 729 10 82 5 5 5

2744 15 197 6 6 6

6859 20 362 6 6 6

13824 25 577 6 6 6

24389 30 842 6 6 6

59319 40 1522 6 6 6

205379 60 3482 6 6 6
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obtained were found to be in qualitative agreement with

the numerical results presented.
It is evident that the forward–backward substitution is

responsible for such performance of the normalized

implicit preconditioned conjugate gradient-type meth-
ods. In order to overcome such inefficiencies in terms of
performance, the finite element normalized explicit

approximate inverse preconditioning should be
exploited.
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Table 2

The performance of the FEANOF-3D algorithm and of the

NIPCGS and NIPBICG-STAB schemes

n Method r1,r2

1 2 4

59319 FEANOF-3D 0:0:00.18 0:0:00.22 0:0:00.31

NIPCGS 0:6:38.31 0:6:39.43 0:6:42.25

NIPBICG-STAB 0:9:04.92 0:9:05.43 0:9:15.22

205379 FEANOF-3D 0:0:00.56 0:0:00.69 0:0:00.98

NIPCGS 1:13:10.64 1:14:02.60 1:14:41.77

NIPBICG-STAB 1:50:29.93 1:50:46.27 1:50:55.14
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