
An algorithm for distributed immersed boundary computations

E. Givelberg*

Department of Mathematics, Courant Institute, NYU, New York, USA

Abstract

The immersed boundary method is a general numerical method for modeling elastic boundaries immersed within a
viscous, incompressible fluid. It has been applied to biological and engineering systems, including large-scale models of

the heart and cochlea. Despite the popularity of the immersed boundary method and the desire to scale the problems to
accurately capture the details of the physical systems, parallelization for large-scale distributed memory machine has
proven challenging. The primary reason is a classic locality and load balance tradeoff that arises in distributing the

immersed boundary data structure across processors. In this paper we describe a parallelized algorithm for the
immersed boundary method that is designed for scalability on distributed memory computers. It is implemented using
the Titanium language, a Java-based language designed for high-performance scientific computing. Our software
package, called IB, takes advantage of the object-oriented features of Titanium to provide a framework for simulating

immersed boundaries that separates the generic immersed boundary method code from the specific application features
that define the immersed boundary structure and the forces that arise from those structures. We demonstrate the
scalability of our design and the feasibility of large-scale immersed boundary computations with the IB package.

Keywords: Fluid–structure interactions; Immersed boundary method; Distributed algorithm; Large-scale computation

1. Introduction

The immersed boundary method is a general numer-
ical method for computational modeling of systems with
elastic (and possibly active) tissue immersed in a viscous,

incompressible fluid. Such systems naturally arise in
biology and engineering. The method was developed by
Peskin and McQueen to study the patterns of the blood
flow in the heart [1,2]. The research in immersed

boundary computations and its many applications are
reviewed in [3]. Immersed boundary models of the heart
and the cochlea [4] motivate the work described in this

paper. Realistic immersed boundary simulations of
complex systems require very large computing resources.
Both the cochlea and the heart models have been con-

structed on shared memory computers, where the
parallelization of the serial immersed boundary code
was achieved mainly with the help of compiler directives

[5,6]. However, large-scale simulations involving hun-
dreds and, perhaps, thousands of processors must be
carried on machines with distributed architecture.

The immersed boundary method uses a Lagrangean

formulation where the fluid is modeled by a three-
dimensional rectangular grid and the immersed material is

described by separate computational grids (one-dimen-
sional fibers, two-dimensional plates and shells, etc.).
Simulation proceeds in a series of time steps, where during

each time step: (i) the elastic forces are computed on the
material grids, (ii) spread to the fluid grid, (iii) the fluid
equations are solved yielding a new fluid velocity, and (iv)
the fluid velocity is interpolated to the material grids and

is used to update their position relative to the fluid.
Distributed memory implementation of the immersed

boundary method have proved quite challenging. The

main challenge is to achieve a load-balanced computa-
tion, while keeping communication costs low. The
interaction between the fluid and the immersed bound-

aries, however, may result in a significant amount of
irregular communication. The algorithm must perform
well for a wide range of possible systems with the

immersed boundaries being sparse or dense, mobile or
static. A distributed Navier–Stokes solver was con-
structed in [7] and attempts to design a distributed
algorithm for the whole immersed boundary method

were reported in [8]. Despite the great need, no scalable
distributed memory implementation of the immersed*Tel.: +1 212 998 3221; Fax: +1 212 995 4121; E-mail:

givelber@cims.nyu.edu

1112

2005 Elsevier Ltd. All rights reserved.

Computational Fluid and Solid Mechanics 2005

K.J. Bathe (Editor)

boundary method has been available. Our distributed
algorithm, descided below, was implemented in Tita-

nium, an explicitly parallel dialect of Java developed at
UC Berkeley to support high-performance scientific
computing on large-scale multiprocessors. More details

and additional results are described in [9].

2. The distributed algorithm

The solution of the discretized Navier–Stokes equa-
tions is the most expensive part of the numerical

method. We have implemented a Fourier transform-
based fluid solver using the distributed routines of
FFTW [10], for which the fluid domain is naturally

partitioned into slabs, one slab per processor.
We describe the immersed boundary by a collection of

grids, each of which is wholly assigned to one of the

available processors, making the force computation
phase completely local. (More complicated schemes are
possible and have been successfully tested.) The assign-

ment of data structures to processors is constant
throughout the computation; neither fluid points, nor
material points migrate between processors.
In phase (ii) immersed boundary forces must be

communicated to the (possibly very few) processors that
own the appropriate portions of the fluid grid. To ensure
a load-balanced computation we break phase (ii) into

three stages and introduce a specialized cache-like data
structure in each processor: First, each processor
spreads the force of every point it owns into this cache.

Next, it sends the contents of its cache to the processors
that own the corresponding portions of the fluid force
array. Finally, it uses the received information to update

its portions of the fluid force array.
We now briefly describe the cache construction (see

Fig. 1). We imagine the rectangular fluid grid as parti-
tioned by a lattice into a collection of small 4 � 4 � 4

cubes. The cache data structure in every processor
consists of an (N1/4) � (N2/4) � (N3/4) array of pointers
to cubes, together with a linked list containing all the

indices of the cubes that have already been allocated. In
the first stage of force spreading, this data structure is
modified. It is easy to update, yet it does not contain an

excessive amount of information; at the end of the local
force-spreading stage it contains the combined force of
the fluid due to the immersed boundary points owned by
the processor.

3. Software performance

We have constructed a number of simple test models,
each consisting of n identical N � N-point plates (N =

256 or N = 512), evenly distributed among processors,

with n = 1, 16 and N/8, and N = 256 and N = 512. We
refer to such models as (N, n)-models below. The sizes

were chosen so that n= 16 models resemble the cochlea,
while the n = N/8 models resemble the heart.
Our experiments were carried out on the IBM SP RS/

6000 cluster of 16-processor nodes at the National

Energy Research Scientific Computing Center
(NERSC), Fig. 2 demonstrates the scaling of our soft-
ware for two test problems. Table 1 summarizes the

results for a number of test models, when the maximal
number of processors is employed.

Fig. 1. The fluid cache: each point of the immersed boundary

interacts with a 4 � 4 � 4-cube of fluid around it; the shaded

region describes the union of the fluid cache structures of all

four processors. The cache of processor i is the intersection of

slab i with the shaded region.

Fig. 2. Wall-clock time (in seconds) per time step for the (256,

1) and (512, 1) models as a function of the number of

processors.

E. Givelberg / Third MIT Conference on Computational Fluid and Solid Mechanics 1113

4. Conclusions

We have developed an efficient algorithm for
immersed boundary simulations on distributed systems.
The classical tradeoff between locality and load balan-

cing arising in fluid–structure interactions is overcome
with the help of a specialized cache-like data structure,
which is used to communicate information between

processors.
We have implemented the algorithm using the Tita-

nium programming language, utilizing its object-
oriented features to provide a set of versatile classes for

building large-scale immersed boundary applications.
We have demonstrated the fesibility of large model
constructions by measuring the performance on a

number of test models. Subsequently, a 5123 cochlea
model based on the IB package has been successfully
tested and Peskin and McQueen’s 1283 heart model has

been reconstructed using the IB package. A 2563 heart
model is presently being built. These are the largest
models that are possible to compute using the available
hardware.

References

[1] Peskin CS. Flow patterns around heart valves: a digital

computer method for solving the equations of motion.

PhD thesis, Albert Einstein College of Medicine, 1972.

[2] McQueen DM, Peskin CS. Computer-assisted design of

pivoting-disc prosthetic mitral valves. J Thorac Cardio-

vasc Surg 1983;86:126–135.

[3] Peskin CS. The immersed boundary method. Acta

Numerica 2002;11:479–517.

[4] Givelberg E, Bunn J. A comprehensive three-dimensional

model of the cochlea. J Comp Phys 2003;191(2):377–391.

[5] McQueen DM, Peskin CS. Shared-memory parallel vector

implementation of the immersed boundary method for the

computation of blood flow in the beating mammalian

heart. J Supercomputing 1997;11:213–236.

[6] Givelberg E, Bunn JJ, Rajan M. Detailed simulation of

the cochlea: recent progress using large shared memory

parallel computers. In: Proc of the 2001 International

Mechanical Engineering Congress, New York, November

2001.

[7] Sabbagh HG. Solving the Navier–Stokes equations on a

distributed parallel computer. PhD thesis, New York

University, 1996.

[8] Yau SM. Experiences in using Titanium for simulation of

immersed boundary biological systems, Master’s Report,

May 2002.

[9] Givelberg E and Yelick K. Distributed immersed bound-

ary simulation in titanium. Submitted.

[10] Frigo M, Johnson SG. The design and implementation of

FFTW3. In: Proc of the IEEE 2005;93(2):216–231.

Special issue on Program Generation, Optimization, and

Platform Adaptation.

Table 1

Wall-clock time per time step for various test models

Model

name

Fluid grid

size

Total immersed

boundary size

Number of

processors

Total

GFLOPs

Wall-clock

time

(256, 1) 2563 2562 = 64K points 64 4.34 1.7 sec

(256, 16) 2563 16 � 2562 = 1M points 64 5.5 2.4 sec

(256, 32) 2563 32 � 2562 = 2M points 64 6.78 3.1 sec

(512, 1) 5123 5122 = 256K points 128 38.4 7.9 sec

(512, 16) 5123 16 � 5122 = 4M points 128 43.2 9.6 sec

(512, 64) 5123 64 � 5122 = 16M points 128 58.1 15.2 sec

E. Givelberg / Third MIT Conference on Computational Fluid and Solid Mechanics1114

