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Abstract

The analysis of micro-electro-mechanical structures (MEMS) is addressed. Focus is set on the evaluation of damping
forces exerted on moving parts through a fast multipole accelerated boundary element method (BEM) technique,
assuming a rigid-body behaviour of the structural parts.
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1. Introduction

Micro-electro-mechanical-structures (MEMS) though
being a promising and revolutionary technology, still
suffer several design difficulties in view of their intrinsic

complexity which is due to the interaction of various
physical phenomena (electromagnetism, solid mechan-
ics, fluid dynamics) and to extremely elaborate
geometries with moving boundaries. The already avail-

able finite element techniques are in general valid tools
for the analysis of MEMS, however the quality of the
analysis of some of the involved phenomena could be

greatly enhanced using boundary element techniques.
One of the open issues in MEMS design is the efficient

simulation of the low Reynolds and Knudsen numbers

fluid flow around moving parts, which can be modelled
by the incompressible steady state Stokes approximation
(see [1]). The adoption of fast multipole accelerated
boundary-element techniques has the advantage of both

allowing for the solution of large-scale external pro-
blems and requiring a negligible amount of remeshing
under a rigid body motion of any of the movable parts.

2. Formulation and examples

In order to evaluate the total drag force due to the

surrounding gas, the MEM structure can be modelled as
a multibody system composed by several movable parts,

subject to large displacements and rotations and to small
deformations.

The rate of deformation is, however, small compared
to the rigid-body velocity, so the fluid flow problem can
be efficiently approximated by a Dirichlet problem,

where the boundary geometry is given by the deformed
configuration and the boundary conditions are given by
the rigid body velocities g of the moving bodies.
This problem is known in literature as the resistance

problem, and it can be formulated in terms of a Fred-
holm integral equation of the first kind in the form

g ðxÞ ¼ ½Vt� ðxÞ ð1Þ

where

½Vt�iðxÞ ¼
Z
�

Gijðx; yÞ tjðyÞ dSy ð2Þ

and Gij is a stokeslet (see [2]).
However, the single-layer formulation, in the case of

the external Dirichlet problems, admits infinite solutions
differing by a set of hydrostatic pressures over each

immersed body. Moreover, the particular geometry of
MEMS leads to extremely ill-conditioned operators.
To overcome these difficulties the mixed velocity-

traction equation, developed by Frangi and Tausch ([3])
can be used. This approach starts from the consideration
that a solution of Eq. (1) is also a solution of the traction

equation
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where

½K0t�jðxÞ ¼
Z
�

Tijkðx; yÞ nkðxÞ tjðyÞ dSy ð4Þ

is the adjoint of the double-layer operator, and Tijk is a
stresslet.

Due to the properties of the null-space of the traction

equation, a linear combination of the two equations of
the form

½Vt�ðxÞ þ �
�

1

2
þ K0

� 
t

� �
ðxÞ ¼ g ðxÞ ð5Þ

still delivers a valid solution for the velocity equation

subject to the constraints defined by the traction

equation. A qualocation approach [4] for the dis-
cretization of the two operators allows to preserve the

orthogonality of the ranges of the corresponding
matrices, such orthogonality being an essential property
for obtaining a correct approximate solution.

The formulation developed proves useful in the range
of limited Knudsen numbers where it has received strong
experimental confirmations. Its range of applicability
can, however, be further extended through the

straightforward implementation of appropriate slip
boundary conditions [1].
Two realistic benchmarks are given by the rotational

comb finger accelerometer and the parallel plate accel-
erometer shown in Fig. 1. Tractions are modelled as
piecewise constant over each triangular surface element.

The convergence history of the generalized minimal

Fig. 1. Comb finger rotational accelerometer and parallel plate accelerometer.

Fig. 2. Rotational accelerometer: convergence history. Fig. 3. Parallel plate accelerometer: convergence history.
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residual (GMRES) iterative solver, run on a standard
desktop PC, is plotted in Figs 2 and 3 for different

meshes up to more than one million degrees-of-freedom.
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