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Abstract

In our paper we describe an operator-splitting method for a transport and nonlinear reaction equation with mixed
discretization methods. We concentrate on adequate discretization methods by using the characteristic method for the

convection–reaction equation with nonlinear reaction, and by using standard finite volume methods for the diffusion
equation. We propose some new strategies based on efficient implementations for the operator-splitting method.
Numerical results are included to demonstrate the performance of our methods.
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1. Introduction

Our motivation for studying nonlinear transport-
reaction-equations comes from the background to pre-

dict scenarios for bio-models based on bio-remediation
with nonlinear reaction parts. The understanding of the
mechanisms for transport and chemical or biological

reactions are important to simulate complex processes in
porous media. The models are often complicated due to
the coupling of species with nonlinear reactions and
their geological structures which are based on hetero-

geneous media. Underlying this background for
nonlinear and complex processes, first frame works in
air pollutions are established, cf. [1,2].

The paper is organized as follows. A mathematical
model of the transport-reaction-equations for chemical
reaction or bio-remediation is introduced in section 2.

The operator splitting is used as a solver-method to
decouple the multi-physical and multi-dimensional
equations to more simple-physical and one-dimensional
equations as described in section 3. The implementation

strategies to include the operator-splitting methods are
based on software integration techniques which are
presented in section 4. The numerical experiments and

their description of our used methods are described in

section 5. Finally the conclusions and an overview for

our next works are discussed in section 6.

2. Convection-diffusion equations with nonlinear

reactions

Our motivation for the study presented below is
coming through the interests on foreseeing processes
from radioactive contaminants [3] or bio-remediation [4]

in porous media.
The mathematical equations are given as

ut þr � ðvu�DruÞ ¼ RðuÞ þ fðx; tÞ; x 2 �; t 2 ð0;TÞ
ð1Þ

u @�j ¼ 0; uðx; 0Þ ¼ u0ðxÞ ð2Þ

The solution, denoted as density or concentration of the

species u = u(x, t), is considered in � � (0,T) � R
d � R,

the space-dimension is denoted by d. The right-hand side
f(x, t) is given in � � (0, T), while D is the Scheidegger

diffusion-dispersion tensor and v is the divergence-free
velocity. We concentrate on the following reaction-terms
R(u)

RðuÞ ¼ �au; radioactive decay; a � 0 ð3Þ
RðuÞ ¼ up; chemical-reaction; p > 0 ð4Þ
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RðuÞ ¼ au� bu2; logistic model, a; b � 0 ð5Þ

RðuÞ ¼ au

uþ b
; bio-remediation; a; b � 0 ð6Þ

For more complicated cases of biodegradation we refer
to the literature [4,5].

In the following we describe the Operator-Splitting
method as a basic splitting method to solve our equa-

tions with standard discretization methods.

3. Operator splitting methods

The operator-splitting methods are developed to solve

complex models in geophysics and environmental phy-
sics; they are described and applied in [1] and [6]. The
basic ideas are the decoupling to simpler equations and
using higher-order discretization methods to increase the

accuracy of each solution. For this aim one could write
the transport Eq. (1) as

ut ¼ AðuÞ þ BðuÞ ð7Þ

with

AðuÞ ¼ �v � ruþ RðuÞ ð8Þ
BðuÞ ¼ r � ðDruÞ þ fðx; tÞ ð9Þ

For the time-steps we define �t := T/N, where N is a
positive integer and T is the positive end time-point.
Further, the time-points are given as tn = n�t with n =

0, 1, . . ., N, and are uniform partitions of the time period
[0, T].

The operator-splitting method for the operators A, B

can be applied as a first-order method and is given as

u
ð1Þ
t ¼ Aðuð1ÞÞ with tn � t � tnþ1 and uð1Þðx; tnÞ ¼ uðx; tnÞ

ð10Þ

u
ð2Þ
t ¼ Bðuð2ÞÞ with tn � t � tnþ1 and uð2Þðx; tnÞ ¼ uð1Þðx; tnþ1Þ

ð11Þ

and the splitting-error can be written as

	n ¼
1

2
�tðð@A

@u
BÞðuÞ � ð@B

@u
AÞðuÞÞ þOð�t2Þ ð12Þ

We obtain a splitting-error O(�t) for not commuting
operators A, B otherwise we get an exact method. For
our nonlinear operators A and B which are given in

equation (8) and (9) we apply the splitting-error and
derive the following result

ðð@A
@u

BÞðuÞ � ð@B
@u

AÞðuÞÞ

¼ ðð�v � r þ @R
@u
Þðr �DrÞÞðuÞ

�ððr �DrÞð�v � r þ RÞÞðuÞ 6¼ 0 ð13Þ

based on the nonlinear functions R(u). We get a split-
ting-error of O(�t) for the nontrivial non-commuting

case, cf. [1].
For the solution method of the coupled Eq. (1), we

split into two equations for the small time period [tn,

tn+1] given as

du

dt
¼ ut þ v � ru ¼ RðuÞ ð14Þ

ut ¼ r � ðDruÞ þ fðx; tÞ ð15Þ
u @�j ¼ 0; uðx; 0Þ ¼ u0ðxÞ ð16Þ

The convection-reaction equation is solved along the
characteristics and becomes a nonlinear ODE

duð1Þ

dt ¼ Rðuð1ÞÞ; t 2 ðt�n; tnþ1Þ
uð1Þðx�; t�nÞ ¼ uð2Þðx�; t�nÞ

(
ð17Þ

where (x, t) is the exact backtracking of (x, t) and u(2) is
the solution for the parabolic problem. For n = 0 or x*
2 @�, we replace u(2) (x*, t*n) by u0(x*) with the

boundary condition given in Eq. (16). Our Eq. (17) is
numerically solved by explicit Euler or Runge–Kutta
methods.
The second part is an initial boundary value problem

for a typical parabolic equation

u
ð2Þ
t ¼ r � ðDruð2ÞÞ þ fðx; tÞ; x 2 �; t 2 ðtn;tnþ1Þ
uð2Þ @� ¼ 0j
uð2Þðx; tnÞ ¼ uð1Þðx; tnþ1Þ

8<: ð18Þ

The spatial discretization of Eq. (18) is done by standard
finite difference, element, or volume methods. Further,

we use explicit time-discretization methods of Eq. (18),
e.g. forward Euler-method and restrict our time-step �t
on the stability condition jDj�t/h2 � 1/2, where jDj<<

1. Because of using implicit time-discretization, e.g.
backward Euler-method, the time-restriction is not
necessary.

In the next section we describe the implementation of
our methods.

4. Implementation of operator splitting methods

In this section, we discuss our implementation stra-
tegies for the method based on various software

integration techniques such as dynamic link library
(DLL) and component object model (COM).

4.1. DLL and COM

The dynamic link library (DLL) is a collection of
functions and data that are available for using one or

more applications running on the same computer
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system. The executable code modules in DLL are loaded
through a demand and linked at run time, and are

unloaded when they are no longer needed. When a DLL
is loaded, it is mapped into the address space of the
calling process. The component object model (COM) is

the Microsoft standard for interoperability of binary
objects. The COM objects are implemented either as
Dynamic Link Libraries (DLLs) or as executables

(EXEs). For details about DLL and COM, readers are
referred to [7]. Now both DLL and COM are supported
by many high-level programming languages such as
C++, Fortran, and even Matlab.

4.2. Tracking characteristics

Characteristic tracking is an important part of this

splitting method. We define an approximate character-
istic as a chain of line segments, which are adaptively
formulated according to the magnitude of the velocity

field. To be more precise, the number of points on each
(approximate) characteristic varies. Both forward and
backward tracking of characteristics could be performed
in practice with respect to the accuracy. Therefore, a

doubly linked list is an efficient data structure for
approximate characteristics. In this part we have to
develop our own code for solving the Eqs. (14) with

adaptive tracking of characteristics.

4.3. Solving nonlinear ODEs along characteristics

To solve the nonlinear ODEs we actually solve along
the approximate characteristics. We apply Euler and
Runge–Kutta methods for our nonlinear ODEs with a
given accuracy. For the flexibility we use different time-

steps on different characteristics to get more exact
solutions.

4.4. Solving parabolic problem via FEM

For the numerical solution of an initial boundary
value problem given as a linear parabolic equation, we

use a finite difference/element/volume method that is
now more or less a conventional task. In this direction
there are plenty of commercial or free software codes
and we concentrate on the most flexible codes. We

choose libMesh, developed at The University of Texas at
Austin [8], and OFELI (Object Finite Element Library)
developed in France [9] provide free C++ source code

that is easy to implement in our programs. Further the
PDE toolbox in Matlab is also a basic finite element
package and does not require users to have C++

programming experience.

5. Numerical experiments

5.1. Example 1: Linear reaction

To examine our method, we first consider a 2-

dimensional problem with a linear reaction. For this
experiment we can find the exact solution so that we can
compare the numerical and exact results. In particular,

we have a rotating velocity v = (�4y, 4x), a constant
scalar diffusion D > 0, a linear reaction R(u) = Ku with
K being a constant, and a null source/sink, i.e. f 	 0. W
assume that the substances are initially normally dis-

tributed, i.e. the initial condition is specified as a
Gaussian hill

u0ðx; yÞ ¼ exp �ðx� xcÞ2 þ ðy� ycÞ2

2�2

 !
ð19Þ

For this special case our exact solution is given by

uðx; y; tÞ ¼ 2�2

2�2 þ 4Dt
exp Kt� ðx

� � xcÞ2 þ ðy� � ycÞ2

2�2 þ 4Dt

 !
ð20Þ

where (x*, y*, 0) is the backtracking initial point for the
characteristics from (x, y, t).

We simplify by using a uniform triangular mesh. For
the characteristic tracking we use the second order
Runge–Kutta (or Heun) method. The finite element

solver for the parabolic part, used as a DLL, is derived
from a modified source code in OFELI.
In our numerical experiments, we choose T = �/2,

� = [�1, 1] � [�1, 1], D = 10�4, K = 0.1, (xc, yc) =
(�0.5, �0.5), and �2 = 0.01. For the parabolic solver,
we use 20 micro steps for each global time step [tn, tn+1].
Due to this solver, we set the maximal number of time-

steps in characteristic tracking also to 20. Table 1 lists
some results for the numerical solution at the final time.
We still obtain very good numerical solutions, even

though the use of a flexible large global time steps.

5.2. Example 2: Nonlinear reaction

The second example is a simplified model for single-
species biodegradation: R(u) = auj(u + b). We consider

Table 1

Numerical results of example 1 with �t = �/8

Mesh size h L1-error L1-error L2-error

1/20 1.266 � 10�2 1.247 � 10�4 3.138 � 10�4

1/40 1.031 � 10�2 5.061 � 10�5 2.085 � 10�4

1/50 9.984 � 10�3 4.153 � 10�5 1.923 � 10�4

1/60 9.796 � 10�3 3.613 � 10�5 1.825 � 10�4

R.E. Ewing et al. / Third MIT Conference on Computational Fluid and Solid Mechanics 1107



a two-dimensional problem with a constant velocity filed
(V1, V2), a scalar diffusion D > 0, and we have no
sources in the domain. The initial condition is a Gaus-

sian hill, as introduced in Eq. (19).
For numerical runs we chose T = 1, � = [�1, 1] �

[�1, 1], (V1, V2) = (1, 1), D = 10�4, a = b = 1, (xc,

yc) = (�0.5, �0.5), and �2 = 0.01. In Table 2 we present
some results of the numerical solution at the final time.

For this problem an exact solution is not known. But

from the results presented in Table 2 we can observe that
the operator-splitting method is stable, and keeps posi-
tivity of the solution.

6. Conclusions

In this paper we propose an operator-splitting method
for transport equations with nonlinear reactions. The
error-analysis for a first-order method is presented. To

implement the improved solver and discretization
methods, we incorporate some existing commercial and
free software components into our own program. By

integrating functionalities of existing software compo-
nents the time period of software development is

significantly shortened. The numerical results corre-
spond to our theoretical results and first nonlinear

computations are presented. In our future work we will
focus on error analysis for the coupled methods with
respect to the physical behavior of the equations. The

use of such flexible splitting methods allows us to
simulate complex physical models.

References

[1] Lanser D, Verwer JG. Analysis of operator splitting for

advection-diffusion-reaction problems from air pollution

modeling. J Comput Appl Math 1999;111:201–216.

[2] Verwer JG, Sportisse B. A note on operator splitting in a

stiff linear case. MAS-R9830, 1998.

[3] Geiser J. R3T: Radioactive-Retardation-Reaction-Trans-

port-Program for the Simulation of radioactive waste

disposals. Technical report, Institute for Scientific Com-

putation, Texas A&M University, College Station, 2004.

[4] Wang H, Ewing RE, Celia MA. Eulerian–Lagrangian

localized adjoint methods for reactive transport with

biodegradation. Numer Meth Partial Diff Eqn

1995;11:229–254.

[5] Celia MA, Kindred JS, Herrera I. Contaminant transport

and biodegradation 1. A numerical model for reactive

transport in porous media. Water Resources Research

1989; 25:1141–1148.

[6] Karlsen KH, Risebro NH. An operator splitting method

for nonlinear convection-diffusion equations. Numer

Math 1997;77:365–382.

[7] Component object model: http://www.microsoft.com/

com/

[8] libMesh: http://libmesh.sourceforge.net/

[9] OFELI: http://ofeli.sourceforge.net/

Table 2

Numerical results of example 2

�t h Umin Umax �t h Umin Umax

0.25 1/20 0.0 1.5159 0.125 1/40 0.0 1.5251

0.25 1/40 0.0 1.5176 0.10 1/20 0.0 1.5248

0.25 1/60 0.0 1.5179 0.10 1/50 0.0 1.5268
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