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Abstract

One of the limitations of boundary element methods (BEM) lies in their need for a fundamental solution. In many
engineering problems, this function is not known analytically but constructed numerically. The corresponding pre-

computed values are stored in tables and later – during the computation – the required values are interpolated. To
overcome this drawback and to accelerate the computation of the BEM, a Fourier transformed boundary element
method was proposed. The focus of this paper is the treatment of singular and hypersingular integrals of this Fourier

BEM. It can be shown easily that all strong and hypersingular values cancel. The computation of the singular integrals
is hence straightforward in the Fourier space and can be used in traditional BEM approaches.
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1. Introduction

For boundary element methods (BEM), it is crucial to
know the fundamental solution (or Green’s function),

which is the response of the infinite medium to a unit
force [1]. Particular boundary conditions are generally
not specified but may be accounted for if advantageous;

this distinguishes fundamental solutions from Green’s
functions. Both may be interpreted as the inverse of the
differential operator. For general nonlinear cases, a

fundamental solution cannot be found. Thus, BEM
treating nonlinear phenomena are referring to the cor-
responding linear cases; the nonlinear terms are shifted
to the right-hand side of the equation [2]. Thus, non-

linear BEM also require linear fundamental solutions.
Nevertheless, in linear problems, it is not evident to

find a fundamental solution. For differential operators

with nonconstant coefficients, this is possible only in
particular cases; a general approach is not established yet,
but first ideas may be taken from Pomp [3]. Even in cases

with constant coefficients, the fundamental solution often
is not known due to the complexity of the differential
operator. For example, there is no fundamental solution

for arbitrary anisotropic three-dimensional elastic media.
After a Fourier transform of the differential equation

with respect to all coordinates, i.e. with respect to time
and space, the inversion of the differential operator is

always possible without difficulty, as long as the differ-
ential operator is linear and has constant coefficients.

For elasticity problems, this leads to an inversion of a
simple 3�3 matrix. The drawback lies then in the inverse
Fourier transform, which is normally for static problems
a three-dimensional integral transform and for dynamic

cases a four-dimensional integration. These integrations
can only be computed analytically in special cases. Thus,
the fundamental solution is normally known only in the

transformed space. In the original space, one has to
compute the inverse transform numerically, storing the
results in tables before the BEM analysis. The values

required later in the BEM are interpolated between the
initially established numerical values. Thus, there is the
error introduced by the truncation of the numerical
inverse Fourier transform and the error originating from

interpolation. Unfortunately, fundamental solutions are
singular near the origin; for BEM, singular and hyper-
singular integrals have to be computed. For these, the

errors have a remarkable influence and one has to be
careful in the implementation of this approach based on
pre-evaluated numerical fundamental solutions.

To overcome this drawback, the author has proposed
an alternative approach [2]. No numerical inverse
Fourier transform is required; the method is based only

on the Fourier transformed fundamental solution, which
is available in all linear cases with constant coefficients.
Thus, the approach generalizes the BEM to a large field
of engineering applications. All computations are done

in the transformed space. For this, the test and trial
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functions have to be transferred to the Fourier space,
which is easily possible for straight elements. A Galerkin

method is preferred to the collocation version of BEM
because the former leads to symmetric matrices and
hence reduces the numerical effort. The normally

required double integration is replaced by a simple
integration. The main theoretical background is Parse-
val’s theorem stating the equivalency of scalar products

in the original space and the Fourier transformed space.
The integrals of the Galerkin BEM are either convolu-
tion integrals or scalar products. The Fourier transform
converts convolution to multiplication – this integration

is vanishing – and scalar products to scalar products.
The matrices of the Fourier BEM are identical to those
obtained by the traditional BEM approach.

One of the important items of BEM is the computa-
tion of singular values [4]. For collocation methods,
weak singular and strong singular integrals have to be

solved. In some particular cases, e.g. fracture mechanics,
even hypersingular integrals occur. Weak singularities
can be integrated directly; for strong and hypersingular

integrals, a regularization procedure has to be estab-
lished to handle Cauchy and Hadamard principle values
(finite parts) [5,6]. A more rigorous study of the integral
equations used in BEM shows that all non-integrable

singularities occur on the left-hand side as well as on the
right-hand side of the equations. Thus, the singular
terms cancel one another. This is shown easily by the

distributional derivation of the integral equations pre-
sented in Chapter 3 of Duddeck [2].
In this contribution, this distributional approach is

presented and developed particularly for the treatment
of singular integrals. The singular layer potential, double
layer potential, and hypersingular potential are derived
and their equivalent expressions in the Fourier trans-

formed space are given. As examples, the Poisson
equation, the Kirchhoff equation, and the Lamé equa-
tion are considered. The singularities in the Fourier

transformed equations required for the Fourier BEM
differ from those in the original space. Thus, a new
strategy to solve them is presented, which develops the

ideas to be found in Duddeck [2]. Especially the hyper-
singular integrals can be computed directly in the
Fourier space. The obtained values are identical to those

that would be obtained in the original space. Thus, the
method presented here may also be of interest for sol-
ving singular integrals in standard BEM.

2. The principle of Fourier BEM

The principle of Fourier BEM is presented here for

the Poisson equation. It can be transferred easily to all
linear differential equations if the coefficients are con-
stant. Scalar and vectorial problems can be treated. The

differential problem is

�uðxÞ ¼ �fðxÞ; x 2 �;

uðxÞ ¼ u�ðxÞ; x 2 �u � @�;

tðxÞ ¼ t�ðxÞ; x 2 �t � @�; ð1Þ

where u(x), f(x), u�(x), and t�(x) are the unknown
quantity (e.g. temperature), the volume sources, and the
Dirichlet and Neumann boundary conditions, respec-

tively. � is the Laplacian. The system (single and double
layer potentials) of the Galerkin boundary integral
equations is [4]:Z
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where U(x) is the fundamental solution, At is the dif-
ferential operator �@ = ��H at the boundary, k(x) is
the free term (normally ½ for smooth boundaries), and

�u and �t are the test and trial functions for the tem-
perature and the flux at the boundaries. For the Fourier
transform of these equations, all integrals are extended

artificially to infinity by assuming zero outside the sup-
port of the test functions [2]. Two theorems are required:

Theorem of Parseval: aðxÞ; bðxÞh i ¼ 1

ð2�Þn âð�x̂Þ; b̂ðx̂Þ
D E

ð4Þ

Convolution theorem: aðxÞ � bðxÞ !Fourier

âðx̂Þb̂ðx̂Þ

(̂ ) denotes a Fourier transformed quantity. The inte-
grals in Eqs (2) and (3) can be interpreted as
convolutions and scalar products. Thus, they can be
converted to:
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These Fourier transformed boundary integral equa-
tions are totally equivalent to those of the traditional
approach. The unknown boundary coefficients ui and ti
are identical to those of standard BEM; they are
obtained from the matrix equations either in the original
or in the Fourier space. No inverse transform is

required. The main advantage is that now only the
Fourier transformed fundamental solution is used,
which can be obtained easily.

3. Two examples: two-dimensional elastic continuum and

Kirchhoff plate

The approach was applied to a two-dimensional
problem from linear elasticity (isotropic and aniso-
tropic) and to a simple plate problem (Kirchhoff theory).

The results are shown in Figs 1 and 2. In all cases, a

square was chosen as the geometry. A single unit force
or uniform loading was applied. In Fig. 1, the effect of

the anisotropy is clearly visible. The unit force in the
middle of the square in the case of anisotropic elasticity
is leading to an infinite response in the direction of the
force at the location of the force. The examples were

computed analytically, and thus the infinite character is
represented correctly.

4. Weak, strong, and hypersingular integrals for BEM

and Fourier–BEM

A local singularity, e.g. a Dirac distribution, is con-
verted by the Fourier transform to a global singularity,

i.e. a nonvanishing behavior at infinity. The Dirac is
transformed to a constant. Thus, the singularities
occurring in traditional BEM still exist after reformu-

lating the problem by the Fourier BEM concept. The
shift from local to global and vice versa requires a new
treatment of these singularities. For the sake of brevity,
the presentation here is limited to the worst case: the

computation of the hypersingular entries. The other
singularities can be handled analogously [2].
A hypersingular matrix entry is, for example,

obtained from

Fig. 1. Perpendicular and parallel displacements of an isotropic (upper row) and anisotropic (lower row) linear elastic medium to a

uniform loading (upper row) and a single unit force in the middle of the square (lower row) computed by Fourier BEM [2].
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The first term is the integral in the original space; the
second term is the expression in the Fourier space. Both
integrals lead to infinite values. The left-hand part of
Fig. 3 depicts the integrand in the Fourier space; it does

not vanish towards infinity. If all singular terms of the
corresponding boundary integral equation are com-
bined, then these singularities will disappear, as shown

in the right-hand part of Fig. 3. The integrand is then

totally regular and can be computed numerically with-
out difficulties. This is possible for all singularities.

5. Conclusions

In contrast to the traditional approach, the Fourier
BEM does not demand numerically pre-established
tables for the fundamental solutions and interpolation

during BEM analysis between these values. This enables

Fig. 2. Isotropic elastic Kirchhoff plate (thin clamped plate) under uniform loading. Upper row: vertical displacements on the left and

slope ’1 on the right. Lower row: moment m11 (left) and shear force q1 (right) computed by Fourier BEM [2].

Fig. 3. Integrand of the hyper singular entry in the Fourier space (left) and the same term after accounting for all singular terms of the

boundary integral equation [2].
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a strategy that is faster, more direct, and less critical with
respect to numerical errors. It is not advantageous when

an analytical fundamental solution is known due to the
higher effort required for the computation of the inte-
grals. Then no tables have to be pre-evaluated and no

interpolation is required. Nevertheless, the singular
integrals (weak, strong, and hyper) occurring in stan-
dard BEM can also be computed in the Fourier space. It

was shown that all non-integrable terms could be can-
celed, resulting in easy-to-handle standard integrals.
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