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Abstract

We propose an a-posteriori error estimate for the semi-discrete discontinuous Galerkin (DG) method of arbitrary
order in arbitrary space dimensions. For stabilization of the scheme a general framework of projections is introduced.

Finally it is demonstrated numerically how the a posteriori error estimate is used for defining appropriate projection
operators and in order to design an efficient grid adaption strategy. Numerical experiments show the gain in efficiency in
comparison with computations on uniform grids.
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1. Introduction

In this contribution we study a semi-discrete version
of the discontinuous Galerkin (DG) approximation of

Cockburn and Shu [1] for non-linear scalar conservation
laws in several space dimensions. As a prototype con-
servation law, consider the Cauchy initial value

problem:

@tuþr � fðuÞ ¼ 0 in R
d � R

þ ð1aÞ

uðx; 0Þ ¼ u0ðxÞ in R
d: ð1bÞ

Here u(x, t): R
d � R

+ ! R denotes the dependent

solution variable, f(u) 2 C1 (R) denotes the flux function,
and u0(x): R

d ! R the initial data.
It is well known (see [2] and the references therein)

that (1a) and (1b) admit a unique entropy weak solution
in the class of functions of bounded variation (BV).
In this contribution we give an a posteriori error

estimate to a generalized semi-discrete class of dis-
continuous Galerkin approximations of (1a) and (1b).
Using this error estimate we define a new class of lim-

iting projections that are used to stabilize the scheme. In
addition, we use the a posteriori result for local adaptive
mesh refinement.

The paper is organized as follows. In Section 2 we will

introduce some notation and define the class of semi-
discrete DG approximations. In Section 3 we will state
the a posteriori error estimate. A special choice within

the new class of DG approximations is specified in
Section 4, and finally in Section 5 we demonstrate the
good convergence behaviour of our new approach in a

numerical experiment.

2. Notation and generalized formulation of the DG

method

Let T denote a tessellation of Rd with control volumes
T 2 T such that [T2T �T = R

d. Let hT denote a length
scale associated with each control volume T, e.g. hT 	
diam (T). For two distinct control volumes Ti and Tj in
T , the intersection is either an oriented edge (2-D) or
face (3-D) Sij with oriented normal �ij or else a set of
measure at most d � 2. The set of edges or face of the

tessellation T will be denoted by �.
On the tessellation T we define the discontinuous

space of piecewise polynomials of degree p by Vp
h := {�h

2 L1 (Rd) j�hjT 2 Pp for all T 2 T }. Let us denote by
Q

Vh
p

the L2-projection into V
p
h. Furthermore, [�h]jSij := (�jjSij

– �l j Sij) �ij is the jump of �h on the edge Sij, and {�h} Sij

:= 1/2 (�jjSij
+ �ljSij

) denotes the mean of �h at an
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interface. With these notations we are ready to define the
semi-discrete DG scheme.

Definition 1 (semi-discrete DG approximation). uh : C
1 (0,

T; Vp
h) is called a semi-discrete DG approximation of

(1a) and (1b), if

uhð0Þ ¼
Y

V
p

h

ðu0Þ ð2aÞ

d

dt
ðuhðtÞ; vhÞ � ðfðuhðtÞÞ;rvhÞ þ ðfhðuhðtÞÞ; ½vh�Þ� ¼ 0

for all vh 2 V
p
h ð2bÞ

Here (�,�) denotes the L2 inner product, (�,�])r denotes the
L2 inner product on the set of inter, face �, and fh
denotes a numerical flux function that is uniquely
defined on the interfaces of the tessellation. Detailed

assumptions on fh will be stated below.
There is numerical evidence and it is well known in

literature that the DG method is not stable for a higher
polynomial degree. Therefore, in the next step we are

going to introduce limiting projections in the dis-
cretization that will be chosen in Section 4. We will
introduce the projections in the semi-discrete formula-

tion, which enforces us to introduce a partition of the
time interval (0, T). Thus, let {0 = to, . . ., tN = T}
denote a partition of (0, T) and let us define the time

increment �tn := tn+1 � tn. In addition we define a local
projection operator. Let us define �vh through �vj :=Q

V0
h
ðvÞ Tj

�� for any v 2 L2 (�). Furthermore, let us

introduce a mapping �h : [0,T] � V
p
h! V

p
h, such that �n;t

h

:= �h(t, �) are projections on V
p
h for all t 2 [tn, tn+1] with

the properties that for any vh 2 H1 (0, T; Vp
h) we have

vhðtÞ ¼ �n;t
h ðvhð�; tÞÞ ð3Þ

and �n;�
h (�h(�,�)) 2 C1 ((tn, tn+1); V

p
h. Note that �h (t, �h (�,

t)) may, in general, have discontinuities in time at the
points t= tn, n= 1, 2, . . . We define the restrictions �n;t

j :

V
p
h ! Pp(Tj) by

�n;t
j ðvhð�; tÞÞðxÞ :¼ �n;t

h ðvhð�; tÞÞðxÞ;
for all ðx; tÞ 2 Tj � ½0;T�

We now define the generalized semi-discrete DG

approximation.

Definition 2 (Generalized semi-discrete DG approxima-

tion). For all n = 0, . . ., N and Tj 2 T h let us suppose
that a projection �n;t

h : V
p
h ! V

p
h with property (3) is

given uh 2 H1 (0, T; Vp
h) is called a generalized semi-

discrete DG approximation of (1a) � (1b), if for u�1h :=
�0;0
h (u0) we have:
For n = 0, . . ., N � 1, unh := uhj[tn,tn+1) 2 C1 (tn,tn+1;

V
p
h) is defined through

unhðtnÞ :¼ �n;tn

h ðu
n�1
h ðtnÞÞ; ð4aÞ

d

dt
ðunj ðtÞ; vjÞTj

¼ �
X
l2NðjÞ

ðfjlð�n;t
j ðunhðtÞÞ;�

n;t
l ðunhðtÞÞÞ; vjÞsjl

þðfð�n;t
j ðunhðtÞÞÞ;rvjÞTj

; ð4bÞ

for all vj 2 Pp; j 2 I; t 2 ½tn; tnþ1�:

Here N(j) denotes the index set of neighboring control

volumes to Tj, (�,�)Tj, (�,�)Sjt denote the local inner pro-
duct on Tj, Sjl respectively, and fjl (uj(t), ul (t)) is the
restriction of fh (uh) to Sjl.

3. A-posteriori error estimate

Theorem 3.1 (A-posteriori error estimate for the semi-

discrete DG method). Let u be the unique entropy solu-
tion of (1a)�(1b) and let uh be given by the semi-discrete
generalized DG method (4a)�(4b). Let us denote ~uh(t)
:= �t

h (�, t)) Then the following a-posteriori error esti-

mate holds for given constants K1, K2

ðu� ~uhÞðTÞk kL1ðBRðx0ÞÞ� �h

where �h := �0 +
ffiffiffiffiffiffiffiffiffiffi
K1�1
p

+
ffiffiffiffiffiffiffiffiffiffi
K2�2
p

, �0 :=P
n

P
j2It

�ni;j; i ¼ 1; 2, and the local contributions �ni;j are

given as �0,j :=
R
Tj

u0 � ~u0j ð0Þ
������ ;

�n1;j :¼
Ztnþ1
tn

Z
Tj

hj @t ~uj þr � fð ~ujÞ
�� ��þ 1

2

Ztnþ1
tn

hjl

Z
Sjl

Qjlð ~uj; ~ulÞ ~uj � ~ul
�� ��

þ
Z
Tj

hj ~unþ1j ðtnþ1Þ � ~unj ðtnþ1Þ
��� ��� ð5aÞ

�n2;j :¼
Ztnþ1
tn

~unj � ~unj

��� ���
L1ðTjÞ

Z
Tj

@t ~unj þr � fð ~unj Þ
��� ��� ð5bÞ

þ 1

2

Ztnþ1
tn

max
k2fj;lg

~unk � ~unk
�� ��

L1ðSjlÞ

Z
Sjl

Qjlð ~uj; ~ulÞ ~uj; ~ul
�� ��

þ ~unj ðtnþ1Þ � ~unj ðtnþ1Þ
��� ���

L1ðTjÞ

Z
Tj

~unþ1j ðtnþ1Þ � ~unj ðtnÞ
��� ���

Here, we used the notation

Qjlðu; vÞ :¼ 2fjlðu; vÞ � fjlðu; uÞ � fjlðv; vÞ
u� v

;

hjl :¼ diamðTj [ TlÞ

Proof. The proof of this theorem is given in [3].
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4. A specific choice of the projection operators

For the choice of the projection operators �n;t
h in the

generalized DG method 2.2 we are now going to intro-
duce our new approach that is based on a restriction of

the gradient of the approximate solution based on the
error estimate in Theorem 3.1. Together with a local
mesh adaption strategy this method is then used in an

hp-adaptive manner.
The goal of the choice of the projection �n; th is

twofold. On the one hand we need a projection or lim-
iting of the solution in order to stabilize the scheme at

least in the case of non-linear conservation laws and, on
the other hand, we would like to bound the term
k~unj ð�; tÞ � ~unj ð�; tÞkL1ðTjÞ in the error indicator �n2;j of

Theorem 3.1 in order to get a converging error indicator
for successively refined computational meshes.
A comparison of the indicators �n2;j and �

n
3;j shows that

the projection should be done in such a way that
k~unj ð�; tÞ � ~unj ð�; tÞkL1ðTjÞ= O(hj). On the other hand the
projection should only be active on mesh cells near

discontinuities and not in smooth regions with steep
gradients. Thus, we suggest to define a projection
parameter �h as

�nj ðtÞ :¼ hj

ðhj þ rnj Þ
pþ2
pþ1
; rnj :¼

Z
Tj

@t ~uj þr � fð ~ujÞ
�� ��

þ 1

2

Z
Sjl

Qjlð ~uj; ~utÞ ~uj � ~ul
�� �� ð6Þ

and to ensure that our projection operators yields a
solution with the property

~unj ð�; tÞ � ~unj ð�; tÞ
��� ���

L1ðTjÞ
� �nj ðtÞ ð7Þ

where we use the notation ~unj (�,t) := �n;t
j (uh(�, t)).

In order to define the method, let ’l, l = 0, . . ., p
denote the orthogonal basis of Legendre polynomials on

the cell Tj := (xj+1/2, xj�1/2) such that ’l 2 Pl(Tj). We
then have the local expansion

unj ðx; tÞ ¼
Xp
l¼0

unj;lðtÞ’iðxÞ ð8Þ

where ’0 = 1 and thus unj ð�; tÞ ¼ unj;0ðtÞ

Definition 4.1 (Derivatives restriction method in 1D). Let
1 � l* � p denote the maximal index such that

Xl�
l¼1

unj;lðtnÞ’lðxÞ � �nj ðtnÞ; for all x 2 Tj

The projection operator in our new derivatives restric-
tion method is then defined as

�n;t
j ðuhð�; tÞ :¼

Xl�
l¼0

unj;lðtÞ’lðxÞ þ ~unj;l�þ1ðtÞ’l�þ1ðxÞ ð9Þ

with ~unj;l�þ1ðtÞ :¼ sgn ðunj;l�þ1ðtÞÞ

min unj;l�þ1ðtÞ
��� ���; �nj ðtnÞ � Xl�

l¼0 u
n
j;lðtnÞ’l

��� ���
L1ðTjÞ

� 	

5. Adaptive numerical experiments in one-space

dimension

As a numerical example we look at the Buckley–
Leverett equation which is a one-dimensional model for
two-phase flow in porous media where capillary pressure

effects are neglected. The unknown variable u : (�1, 1) �
(0,0.4)! R is the saturation of the wetting phase within
the two-phase mixture. It satisfies the non-linear con-

servation law

ut þ @xfðuÞ ¼ 0; on ð�1; 1Þ � ð0; 0:4Þ;
uð�; 0Þ ¼ u0; on ð�1; 1Þ

where the fractional flow rate f is given as f(s) =
u2

u2þ12ð1�uÞ
2
. We will look at this problem for the following

initial data.

u0ðxÞ :¼
1; for x < �0:6
0; for� 0:6 � x < 0:2
1; for 0:2 � x

8<:
Thus, the solution of our Buckley–Leverett problem
consists of the solution of two distinct Riemann pro-
blems for t smaller than some critical time T*. The
solution of each Riemann problem is a composed wave

consisting of a rarefaction wave and an attached shock,
and the exact solution is known up to solving an ODE
for the rarefaction waves.

In Fig. 1 the adaptive DG-approximation with p = 1
is shown in comparison with the exact solution at T =
0.4. It can be seen that the adaptive DG approximation

fits very well with the exact solution on a computational
grid with only about 100 grid cells. The distribution of
the refinement level of the local adaptive grid is also

plotted. In Fig. 2 the convergence rate of our new DG
scheme on uniform and on adaptive grids is shown. The
a-posteriori error estimate of Theorem 3.1 is used for
adaptive mesh refinement and for the definition of the

projection operators (see Section 4). For a more detailed
presentation of the adaptive strategy and for a com-
parison with other choices of limiting projection we refer

to [3].
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6. Conclusion

In this paper we introduced a new DG method for
non-linear conservation laws that is derived from an a-
posteriori error estimate. The resulting method uses

limiting projections that are steered by the error indi-
cators from our a posteriori result. In addition, the a-
posteriori error estimate is also used for adaptive local

mesh refinement. Numerical experiments demonstrate

that the fully adaptive scheme has a better convergence
order than a comparable scheme on uniform meshes.
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