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Abstract

In this paper, we present a radial basis function based meshless method that employs Schwarz domain decomposition

techniques and Newton iteration for solving nonlinear elliptic partial differential equations (PDEs). Numerical results
are presented for a model nonlinear Poisson problem. We find that the domain decomposition algorithms give accurate
results at a much lower cost. In addition, these algorithms are straightforward to parallelize.
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1. Introduction

In recent years, the application of radial basis func-
tions (RBFs) to solve partial differential equations
(PDEs) has become very popular. Kansa [1,2], intro-

duced the unsymmetric RBF collocation technique
motivated by advances in function approximation the-
ory. This method is a truly meshless scheme since it
makes use of only a scattered set of collocation points in

the domain and no connectivity information is required.
The most commonly used globally supported RBFs are
multiquadrics (MQ) [

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ �2

p
], thin plate splines [r4 log

r, r8 log r], and Gaussians [exp(�r2/�2)]. Here, r denotes
the Euclidean norm and � is a shape parameter that
controls the region of influence of the RBF.

The solution of nonlinear PDEs using RBFs has been
studied previously [3–6]. Fasshauer solved nonlinear
elliptic problems using a multilevel Newton iteration

method coupled with RBFs [5]. He found that the MQ
globally supported RBF produced better results com-
pared with finite elements (FE) and locally supported
RBFs, even when a coarse set of collocation points are

used. However, the RBF approach can be computa-
tionally expensive for a large number of collocation
points [5].

In the case of the RBF interpolation technique,
Schaback’s uncertainty principle [7] points out that the
coefficient matrices become progressively ill-conditioned

as the accuracy of the RBF interpolant improves. This
principle applies even for the solution of PDEs. Kansa

and Hon [8] have suggested some techniques to cir-
cumvent the ill-conditioning problem, such as using
truncated RBFs, preconditioning, and domain decom-

position methods (DDMs). For some recent work on
DDMs using RBFs, the reader is referred to Zhou et al.
[9], Li and Hon [10], and Chinchapatnam et al. [11].
These papers illustrate the efficiency of DDMs for linear

elliptic and time-dependent PDEs. In this paper, we
extend our earlier work [11] to apply the RBF-based
overlapping Schwarz DDMs coupled with operator

Newton iteration for solving nonlinear elliptic problems.
Numerical studies show that DDMs give results at a
much lower computational cost compared with the

standard RBF collocation technique while incurring a
slight loss of accuracy.
In Section 2, we present the Newton iteration method

coupled with the standard unsymmetric collocation
method for the solution of nonlinear PDEs. In the
remainder of the paper, we refer to this method as the
standard Newton iteration RBF scheme. In Section 3,

we introduce Schwarz domain decomposition methods
coupled with RBFs. In Section 4, numerical studies are
presented for a model problem to illustrate the efficiency

of the proposed domain decomposition schemes.
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2. RBF collocation method for nonlinear PDEs

In the present work, we consider nonlinear elliptic
PDEs of the form

LuðxÞ ¼ fðxÞ; x 2 � � R
d

BuðxÞ ¼ gðxÞ; x 2 @� � R
d ð1Þ

where L is a nonlinear differential operator and B is a

boundary operator (Dirichlet, Neumann or mixed). �
represents a bounded physical domain and @� repre-
sents its boundary. f(x) and g(x) are some prescribed

functions.
Eq. (1) can be solved using the Newton iteration

method. In this method, one starts with an initial solu-

tion u0(x) and then obtains a sequence {ui} of
approximate solutions using the Newton iteration for-
mula. Let L i�1 be the linearized version of the nonlinear
differential operator L at iteration i � 1; then the update

at i � 1 is the solution of the following linear operator
problem:

L i�1vðxÞ ¼ fðxÞ � Lu i�1 ðxÞ; x 2 �

BvðxÞ ¼ gðxÞ � Bu i�1 ðxÞ; x 2 @� ð2Þ

Once v(x) is obtained by solving Eq. (2), then the new
estimate at iteration i is given by

uiðxÞ ¼ ui�1ðxÞ þ vðxÞ ð3Þ

The RBF collocation method is utilized to solve Eq.
(2). At each iteration, the Newton update v(x) is
assumed to be given by

vðxÞ ¼
XN
j¼1

�j� x� cj
�� ��� �

ð4Þ

where �(kx � cjk): Rd ! R is an RBF centered on cj 2
R
d. These centers are chosen from the set C= {(ci)ji=1,nd

2 �, ðciÞji¼ndþ1;ndþnb 2@�}, where nd and nb denote the
number of centers inside the domain and on the
boundary, respectively, and N = nd + nb. For the sake

of simplicity, we assume that the RBF centers coincide
with the collocation points.
Substituting Eq. (4) into Eq (2) and collocating on

each of the points in C, we obtain the following linear
algebraic system of equations

XN
j¼1

�jL i�1� xi � cj
�� ��� �

¼ FðxiÞ; i ¼ 1; 2; . . . ; nd

XN
j¼1

�jB� xi � cj
�� ��� �

¼ GðxiÞ; i ¼ nd þ 1; nd þ 2; . . . ;N

ð5Þ

which can be solved for the unknown coefficients �j, j =
1, 2, . . ., N.

Note that the coefficient matrix of the above system of
equations changes at every Newton iteration and thus
the computational cost of the RBF method is increased,

as the matrix needs to be decomposed at each iteration.
Also, the matrix formed suffers from ill-conditioning at
the optimal values of the shape parameter when multi-

quadric RBFs are used [7].
In the present paper, we extend the standard Newton

iteration RBF method by employing domain decom-
position techniques to efficiently solve Eq. (2). Using the

DDMs, it is found that the coefficient matrices in each
subdomain have better condition numbers and the
whole process tends to become much faster compared

with the standard Newton iteration RBF scheme. It is
worth noting that the Schwarz domain decomposition
schemes presented in this paper can also be coupled with

other techniques, such as the fixed point iteration
method.

3. Domain decomposition scheme

Domain decomposition methods using RBFs may be
applied to solve the Newton update problem in Eq. (2).
For simplicity of presentation, we illustrate a Schwarz

additive domain decomposition for the case when the
domain � is partitioned into two overlapping sub-
domains �1 and �2. Also, let �k denote the part of

boundary of �k that is interior to � (artificial boundary)
and @�k\�k denote the natural boundaries of �k sub-
domain (k = 1, 2). A schematic diagram of the domain
is shown in Fig. 1.

At each outer Newton update iteration i, the sub-
domain problems can be written as

L i�1vi;j1 ¼ f� Lui�11 in �1; L i�1vi;j2 ¼ f� Lui�12 in �2

Bvi;j1 ¼ g� Bui�11 on @�1n�1; Bui;j2 ¼ g� Bui�12 on @�2n�2

Svi;j1 ¼ vi;j�12 on �1; Svi;j2 ¼ vi;j�11 on �2 ð6Þ

where S denotes the artificial boundary operator, which
can be a Dirichlet, Neumann, or mixed operator, and j

denotes the iteration number of the inner Schwarz
iterations.
Eq. (6) can be solved using the RBF collocation

method presented in Section 2. In other words, v1(x) and
v2(x) are approximated using expansions of the form
given in Eq. (4). For the Schwarz additive algorithm, the
values of v(x) on the artificial boundaries are updated

after solving the operator problem for each subdomain
�1 and �2. On the overlapping regions, the value of the
Newton update v(x) is taken to be the average of the

values of v1(x) and v2(x) in order to enforce continuity
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across the artificial boundary. In the Schwarz multi-

plicative version of the algorithm, the value of v(x) is
updated in a sequential fashion, i.e. the value v1(x)
obtained by solving the operator problem on �1 is
substituted into the right-hand side of the operator

problem for �2. The Schwarz iterations continue until
the difference in the values of v(x) for subsequent
iterations is less than some fixed value ". Once Eq. (6) is

solved to obtain the value of v(x), it can be added to the
previous estimate ui�1(x) to obtain the new estimate.
Likewise, the Newton iterations continue until the

solution converges.

4. Numerical studies

To illustrate the performance of the proposed domain

decomposition algorithms, we use the following two-
dimensional (2D) nonlinear PDE taken from Fasshauer
[5]:

�"2r2uðxÞ � uðxÞ þ uðxÞ3 ¼ fðxÞ; x 2 � ¼ ð0; 1Þ2

uðxÞ ¼ 0 x 2 @� ð7Þ

The function f(x) is chosen so that Eq. (7) has an ana-
lytic solution of the form u(x, y) =  (x) (y) with  (t) =
1 + e�1/" � e�t/" � e(t�1)/". Here, (x, y) denote the

Cartesian coordinates of x 2 R
2, and the parameter "

determines the size of the boundary layers near the edges
of the domain �. We use " = 0.1 in the presented

studies.
The accuracy of the results is estimated using the

following error norm calculated on a very fine uniform
mesh (50� 50 collocation points),

e ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

m

Xm
j¼1

uanalyticðxjÞ � unumericalðxjÞ
�� ��2vuut ;

where m is the number of points in the fine mesh
For the Schwarz additive case, the subdomain pro-

blem to be solved is given by

�"2r2vi;jk þ ½3ðu
i�1Þ2 � 1�vi;jk ¼ fþ "2r2ui�1k þ ui�1k � ðui�1k Þ

3; in �k

vi;jk ¼ 0; on @�k\�k

vi;jk ¼ vi;j�1l ; on �k

ð8Þ

where i represents the outer Newton iteration number
and j represents the iteration number of the inner
Schwarz iterations. The inner iterations are terminated

when vi;jk � vi;j�1k

��� ���
2
< 1:0E� 03; k ¼ 1; 2; . . . ;Ne,

where Ne denotes the number of subdomains.
We use the MQ RBF for the numerical studies. The

shape parameter was chosen from the set ½ 2ffiffiffi
N
p ;1Þ, such

that the residual error calculated for the linear problem
at each iteration is minimum. A comparison of the
results obtained using the standard Newton iteration

RBF scheme using 1600 points with the analytical
solution is shown in Fig. 2.
In Table 1, we present the results of the Schwarz

domain decomposition schemes for the case when the
number of subdomains (Ne) is equal to two along with
the standard Newton iteration RBF scheme (i.e. Ne =
1). The number in brackets gives the value of the shape

parameter used. The computational cost is assumed to
be proportional to the CPU time. All the calculations
were performed on an AMD Athlon machine with an

MP 2600+ processor. For the first three entries in the

Fig. 1. Point distributions in the Schwarz subdomains.
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table, the results for DDMs are not given, as the com-

putational cost incurred by the DDM method is
insignificant. From the results, it can be seen that for
Ne = 2, DDMs are much faster than the single-domain

Newton iteration method, with a slight loss of accuracy.
Next, we investigate the influence of number of sub-

domains on the accuracy and computational cost. The

total number of collocation points was fixed at 1,600
and the physical domain was divided into two, four, and
eight subdomains. The results are presented in Fig. 3.
From this figure, it can be seen that as the number of

subdomains increases, the computational cost decreases.
However, the accuracy of the method also suffers.

5. Conclusion

Meshless overlapping Schwarz additive and multi-
plicative DDMs coupled with Newton iterations are

presented for solving nonlinear elliptic PDEs. The per-
formance of these techniques was compared with that of
the standard RBF method coupled with Newton itera-

tion by solving a 2D nonlinear problem. The DDMs
were found to be much faster than the standard Newton
iteration RBF scheme. However, as the number of
subdomains increases, the computational cost decreases

at the expense of accuracy. Also, it is worth noting that
using piecewise linear finite elements, 16,384 nodes are
needed to obtain an accuracy of O(10�3) [5]. In com-

parison, the RBF studies achieve similar accuracy using
only 400 collocation points. Finally, the presented
algorithms are suitable for parallel implementation.

Fig. 2. Comparison of RBF–Newton iteration scheme result with analytical solution.

Table 1

Domain decomposition scheme results using MQ RBF

Ne = 1 Ne = 2

Standard Newton Additive Schwarz Multiplicative Schwarz

N L2 error (�) CPU time (s) L2 error (�) CPU time (s) L2 Error (�) CPU time (s)

16 1.92E � 01 (2.5) 0 – – – –

36 7.76E � 02 (2.5) 0 – – – –

100 1.45E � 02 (1.1) 1 – – – –

400 8.62E � 04 (0.5) 8 4.83E � 03 (0.5) 3 3.92E � 03 (0.5) 2

900 2.90E � 04 (0.3) 17 2.96E � 03 (0.3) 7 2.40E � 03 (0.3) 10

1600 1.90E � 04 (0.2) 46 1.23E � 03 (0.2) 22 1.0E � 03 (0.2) 28
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