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Abstract

In this paper, we review a discontinuous Galerkin (DG) method and develop a finite volume (FV) method, within the
framework of the heterogeneous multiscale method (HMM), for solving hyperbolic problems. Although the methods

can be applied to general cases, we consider in this paper only hyperbolic scalar advection equations and Euler systems.
Error estimates are given for the linear equations and numerical results are provided for the linear and nonlinear
problems to demonstrate the capability of the methods.
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1. Introduction

In this paper, we review a discontinuous Galerkin
(DG) method [1] and develop a finite volume (FV)

method, within the framework of the heterogeneous
multiscale method (HMM), for solving multiscale
hyperbolic problems. The methodology can be applied

to general cases (multidimensions, other types of equa-
tions, etc.), but we consider in this paper only one-
dimensional hyperbolic linear scalar advection equa-
tions and nonlinear Euler equations, all with coefficients

involving different scales. Direct numerical treatments of
these problems are difficult due to the cost required for
resolving the smallest scale.

The main motivation behind the HMM is to make
efficient usage of both the macroscopic and the micro-
scopic formulations, even in cases when the macroscopic

equations or models are not known explicitly. The basic
set-up is as follows [2]: We have a microscopic process
that describes the microscopic state variable u, which is
defined on a microscopic domain D. We also have a

macroscopic process that describes the macroscopic
state variable U, which is defined on a macroscopic
domain D. The two processes and state variables are

related to each other by the compression and

reconstruction operators, denoted by Q and R, respec-

tively: Qu = U, RU = u, with the property QR = I,
where I is the identity operator. For example, if the
microscopic process is described by kinetic theory and

the macroscopic process is described by hydrodynamics,
then the compression operator maps the one-particle
phase-space distribution function to the conserved mass,

momentum, and energy densities. The reconstruction
operator does the opposite and is, in general, not
unique. Our aim is to approximate accurately the mac-
roscopic state of the system. We do so by working with a

macroscopic grid that resolves the large scale of the
problem. There are two main components in HMM: an
overall macroscopic scheme for U and estimating the

missing macroscopic data from the microscopic model.
The main numerical work will consist in solving the

microscopic model, but this is only done on small sub-

domains of the original domain, to a microscopic time
that is typically much smaller than the macroscopic time
step. Since the microscopic cell problems are indepen-
dent, they can be solved in parallel, which is another

advantage of this method.
In Section 2, we describe the HMM-DG and the

HMM-FV methods for the one-dimensional linear

hyperbolic scalar advection problem and provide an
error estimate and numerical examples. In Section 3,
one-dimensional hyperbolic nonlinear Euler systems are

considered, where numerical examples are provided.
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2. Hyperbolic scalar problem

Consider the following model problem in one
dimension

u"t þ ða"ðxÞðu"Þx ¼ 0 in ½0,T� � ½0,2��, ð1Þ
u"ðx,0Þ ¼ u0ðxÞ x 2 ½0,2��, u"ð0,tÞ ¼ u"ð2�,tÞ
t 2 ½0,T�

where a"(x) is an oscillatory function involving a small
scale ". For the analysis, we take the example a"(x) =
a"ðxÞ ¼ a x, x

"


 �
> 0, with a(x, y) smooth and periodic in

y with a period I" = [0, 2�], although the methodology
can be applied to a general a"(x). Classical homo-
genization theory tells us that u" ! �u weakly in

L2ðð0;TÞ;H1
pÞ, where �u is the solution of the so-called

homogenized problem

�ut þ ð �aðxÞ �uÞx ¼ 0 in ½0,T� � ½0,2�� ð2Þ

and �a(x) is the harmonic average of a"ðxÞ ¼ a x, x"Þ



given
by

�aðxÞ ¼ 1

1
2�

R2�
0

aðx; yÞ�1dy
 ! ð3Þ

The macroscale model for this problem will be

Ut þ FðU,xÞx ¼ 0 ð4Þ

where F(U, x) = �a(x)U, but in the HMM-DG and
HMM-FV methods we do not assume explicit knowl-
edge of this flux.

2.1 Setup of the numerical scheme

We describe only the setup of the HMM-FV method,
and refer to Chen, E, and Shu [1] for the setup of the

HMM-DG method. The finite volume scheme for Eq.
(4) is

dUj

dt
¼ �

F�
jþ12
� F�

j�12
�xj

ð5Þ

for j = 1, .., N, where Uj approximates the cell averages
of the exact solution U of Eq. (4). Notice that we have
chosen the flux F̂(U, x) to be F� � F(U�, x), since a(x,

y)>0, and therefore �a > 0. If a(x, y) is not always
positive, then a Lax–Friedrich flux involving both U�

and U+ can be used.

The missing data for the finite volume method are
F�
j�12

. We summarize the numerical procedure in the

following:

1. Select the microcells: we can pick
I"
jþ12
¼ ½x

jþ12
� 2�",x

jþ12
� for the point xj+1

2
.

2. Reconstruct the initial condition for the microscale
problem (third-order finite volume reconstruction):
û"0 ¼ U�

jþ12
¼ �1

6Uj�1 þ 5
6Uj þ 1

3Ujþ1.

3. Solve the microscale problem Eq. (1) on I"
jþ12

with the

initial condition û"0 and a periodic boundary condi-
tion. We evolve the microstate û�(t) for some suitably

chosen time T". At each micro-time step, we com-
pute the microscale flux f̂ "ðx,tÞ ¼ aðx, x"Þû"ðx,tÞ, and
perform:

4. (a) temporal averaging

f̂ "ðxÞ ¼ 1
T"

R tnþT"
tn K t

T"


 �
f̂ "ðx,tÞdt

where K(t) = 1 � cos (2�t).
(b) spatial averaging

F̂ "

jþ12
¼ F�

jþ12
¼ 1

I"
jþ1

2

��� ���
Z
I"

jþ
1
2

f̂ "ðxÞdx ð7Þ

5. Use Eq. (5) to compute Un+1(x).

2.2. L2 error estimate

Proposition 2.1: Let �u be the exact solution of the

homogenized problem Eq. (2) and U be the numerical
HMM-FV solution of Eq. (4) using (k + 1)th order
reconstruction in Step 2; then we have the L2 error

estimate

U� �uk k � C
"

�x
þ "

T"�x
þ�xkþ1

	 

ð8Þ

where T" is the terminal time on the microscale problem
and C is a constant independent of " and of �x and

dependent on the derivatives of �u. A similar error esti-
mate is also valid for the HMM-DG method [1].

2.3. Numerical results

In this subsection, we present numerical results of the

HMM-FV method for Eq. (1) with the initial condition
u0(x) = sin(x). Table 1 contains the L1 and L1 errors
and orders of accuracy when the third-order HMM-FV
method is applied to Eq. (1) with the coefficient

a"ðxÞ ¼ 1
3þsinðx="ÞþsinðxÞ, using N uniform cells, at T =

6.28. The microscale problem is solved by the first-order
finite volume method using 20 uniform cells and with

T" = 1000�t", where �t" is the time step on the
microscale problem. We can clearly see third-order
accuracy and the dependency between the smallest �x

to observe the correct order and ", agreeing with the
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error estimate in Eq. (8). Numerical results for the
HMM-DGmethod can be found in Chen, E, and Shu [1].

3. Hyperbolic Euler systems

We consider the Euler equation of compressible gas
dynamics

u"t þ fðu"Þx ¼ 0, ð9Þ

where u" = [�", �"v", E"]T, f(u") = [�"�", �"(v")2 + p",
v"(E" + p")]T, and as a prototype problem we consider

the equation of state as involving an oscillatory
coefficient

p" ¼ a"ðxÞ½ðE" � 1

2
�"ðv"Þ2Þð� � 1Þ�: ð10Þ

The harmonic average of a"ðxÞ ¼ a x,x="ð Þ takes the
form of Eq. (3). The simple average of a"(x) is simply
~aðxÞ ¼ 1

2�

R 2�
0 aðx; yÞdy. The HMM-FV method for the

hyperbolic system is formulated in exactly the same
fashion as that for the scalar problem, repeated three
times for each of the three components of u", except for

Step 2, where we use the fifth-order WENO recon-
struction [3], since this nonlinear problem has shocks in
its solution.

3.1. Numerical results

The first numerical example is the nonlinear Euler
Eqs. (9) and (10), with the oscillatory coefficient

a"ðxÞ ¼ 1
1þ0:1 sinðx="Þþ0:1 sinðxÞ, the initial condition �= 1+

0.2 sin(x), v = p = 1, and with periodic boundary
conditions. We compute the solution to T = 1.

We use the finite volume method with a fifth-order
weighted essentially non-oscillatory (WENO) recon-
struction. The microscale problem is solved by a third-

order finite volume method using 20 uniform cells and
with T" = 1000�t". The HMM-FV solutions with N =
38 and N = 76 uniform cells for "= 10�6, as well as the

‘converged’ local average solution �u = lim"!0 �u", where
�u", is the local average of u", the solution of the oscil-
latory Euler Eqs. (9) and (10) obtained by a direct
numerical simulation of the microscale problem in Eqs.

(9) and (10) using the fifth-order WENO scheme [3] with
an extremely refined mesh containing at least 20 grid
points per period of the " scale structure, are plotted in

Fig. 1 (top two figures). We also plot the solution ~u, the
solution of the large-scale equation with a"(x) in Eq. (10)
replaced by a simple average ~a(x), on the same figure. It

can be seen clearly, especially in the right-hand figure,
which is a zoomed version, that the HMM-FV solutions
converge to �u rather than to ~u, indicating that the HMM

strategy is working in this nonlinear case.
The second numerical example is the Sod’s shock tube

problem for the nonlinear Euler Eqs. (9) and (10), with
the oscillatory coefficient a"ðxÞ ¼ 1

1þ0:4 sinð2�x="Þþ0:1 sinðxÞ,
and the initial condition � = 1, v = 0, p = 1 if x 2
[�3,0]; �= 0.9, v = 0, p = 0.9 if x 2 [0,3]. We compute
the solution to T = 0.4.

The bottom two figures in Fig. 1 are the HMM-FV
solutions for N = 19, 38, and 76 uniformly spaced mesh
cells for "= 10�6, as well as the converged local average

solution �u. We also plot the solution ~u on the same figure
as a reference. It can be seen again, especially in the
right-hand figure, which is a zoomed version, that the
HMM-FV solutions converge to �u rather than to ~u,
indicating that the HMM strategy is again working in
this nonlinear case.
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Fig. 1. Density �. Top: the HMM-FV solution with N= 38 and 76 uniform cells for "= 10�6, versus the locally averaged solution �u to

the nonlinear oscillatory Euler equations (denoted by ‘exact’). The solution ~u of the simply averaged Euler equations (denoted by

‘simple average’) is also plotted as a reference. Bottom: Sod’s Shock tube problem. The HMM-FV solution with N = 19, 38, and 76

uniform cells for " = 10�6, versus the locally averaged solution �u to the nonlinear oscillatory Euler equations. The solution ~u of the

simply averaged Euler equations is also plotted as a reference.
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