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Abstract

We introduce a new Runge–Kutta discontinuous Galerkin (RKDG) method for problems of wave propagation that
achieves full high-order convergence in time and space. For the time integration it uses an mth-order, m-stage, low

storage strong stability preserving Runge–Kutta (SSP–RK) scheme which is an extension to a class of non-autonomous
linear systems of a recently designed method for autonomous linear systems. This extension allows for a high-order
accurate treatment of the inhomogeneous, time-dependent terms that enter the semi-discrete problem on account of the

physical boundary conditions. Thus, if polynomials of degree k are used in the space discretization, the (RKDG)
method is of overall order m = k + 1, for any k > 0. Numerical results in two space dimensions are presented that
confirm the predicted convergence properties.
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1. Introduction

In this paper, we devise a new Runge–Kutta dis-

continuous Galerkin (RKDG) method that achieves full
high-order convergence in time and space while keeping
the time-step proportional to the spatial mesh-size. To

this end, we derive an extension to non-autonomous
linear systems of the mth-order, m-stage strong stability
preserving Runge–Kutta (SSP-RK) scheme with low

storage described in Gottlieb et al. [1]. With this time-
integration scheme, and if polynomials of degree k are
used in the space discretization, our RKDG method can
be made to converge with overall order m = k + 1, for

any k > 0. In particular, the scheme allows for a high-
order accurate treatment of the inhomogeneous (time-
dependent) terms that enter the semi-discrete problem

on account of the physical boundary conditions.

2. The problem and the main result

2.1 Maxwell’s equations

Consider the Maxwell’s equations

@B

@t
¼ �r� E,

@D

@t
¼ r�H ð1Þ

where the magnetic induction B and electric displace-
ment D will be assumed to depend linearly on the
magnetic field H and E respectively, that is B = �rH,

D = �rE. The Eqs. (1) must be supplemented with initial
conditions

Eðx,0Þ ¼ E0ðxÞ, Hðx,0Þ ¼ H0ðxÞ ð2Þ

and boundary conditions that guarantee the continuity
of tangential components of the electromagnetic field
across material interfaces �

Eþðx,tÞ � n ¼ E�ðx,tÞ � n, Hþðx,tÞ � n ¼ H�ðx,tÞ � n,

x 2 �, ð3Þ

where n is normal to �,

Eþðx,tÞ � lim

!0þ

Eðxþ 
 n,tÞ,

E�ðx,tÞ � lim

!0�

Eðxþ 
 n,tÞ

and similarly for H�. Finally, in the case of (exterior)
scattering problems, an additional condition must be

imposed at infinity. The physically relevant condition is
the Silver-Müller radiation condition which requires that

lim
xj j!1

ðH�HincÞ � x� xj jðE� EincÞ
� �
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where (Einc, Hinc) denotes the incident field.

2.2. Space discretization: a DG scheme

The Eqs. (1) can be written in ‘conservative form’ as

Q
@U

@t
þr � FðUÞ ¼ 0 ð5Þ

where

QðxÞ ¼ � 0
0 �

� �
, U ¼ H

E

� �
, FiðUÞ ¼

ei � E

�ei �H

� �
and F(q) = [F1(q), F2(q), F3 (q)]T. Given a partition
Th = {Kn} of a computational domain � we consider
local spaces Pk(Kn) on each sub-domain consisting of

polynomials of degree smaller than or equal to k. A DG
formulation then takes on the formZ
Kn

Q
@Uh

@t
 dx�

Z
Kn

Fh � r dxþ
Z
@Kn

cFn � n ds ¼ 0

ð6Þ

for all  2 Pk(Kn), where n is the outward unit normal
vector to @Kn and cFh � n is the numerical flux on @Kh. A
natural choice of the numerical fluxes is the upwind flux.
For the present case, the upwind flux can be written as

bF � n ¼ n� Ê

�n� Ĥ

� �
¼ n� ðYE�n�HÞ�þðYEþn�HÞþ

Y�þYþ

�n� ðZHþn�EÞ�þðZH�n�EÞþ
Z�þZþ

" #
ð7Þ

where Z ¼
ffiffiffiffiffiffiffiffi
�=�

p
denotes the impedance and Y = 1/Z;

see Mohammadian et al. [2].
For exterior (e.g. scattering) problems, a suitable

approximation of the radiation condition, Eq. (4), must
be imposed on an artificial boundary that truncates the
computational domain and allows for reflected waves to

exit with minimal reflections.
The exact non-reflecting conditions in Grote and

Keller [3] can be used to derive (rather complicated)

expressions for the fluxes at the artificial boundary. They
give rise to time-dependent terms in the system of
(ordinary differential) equations – cf. Eq. (9) – for the
coefficients cKj ðtÞ in the expansion

Uh K
j ¼

XNk

j¼1
cKj ðtÞ jðxÞ ð8Þ

of the approximate fields in terms of the basis functions

 j 2 Pk(K).

2.3. Time discretization: an SSP-RK method for
inhomogeneous systems

The Eq. (6), together with the Eq. (8) and numerical
fluxes as described above, leads to a system of equations

d

dt
C ¼ LCþ SðtÞ ð9Þ

where L is a constant matrix and CðtÞ ¼ cKj ðtÞ
	 


1�j�Nk
K2Th

.

To approximate the solution to Eq. (9), we propose a
scheme which is an extension to the SSP-RK scheme

introduced in Gottlieb et al. [1] for autonomous systems.
Denoting Cn � C(tn), we seek an mth order, m-stage
scheme in the form

Cð0Þ ¼ Cn

CðiÞ ¼ Cði�1Þ þ�tLCði�1Þ þ�tSðiÞ, i ¼ 1, . . . ,m

Cnþ1 ¼
Xm
k¼0

�m,kC
k ð10Þ

where the coefficients �m,k are those corresponding to

the scheme in Gottlieb et al. [1], namely

�1,0 ¼ 1

�m,k ¼
1

k
�m�1,k�1, k ¼ 1, . . . ,m� 2

�m,m ¼
1

m!
, �m,m�1 ¼ 0, �m,0 ¼ 1�

Xm
k¼1

�m,k ð11Þ

and the source terms Si are derived in Chen et al. [4]

SðiÞ ¼ ðIdþ�t@tÞi�1�ðtnÞ ð12Þ

2.4. Numerical results

We consider a radiation problem:

Exðx,y,tÞ ¼
y

r
ð� sinð!tÞJ1ð!rÞ þ cosð!tÞY1ð!rÞÞ

Eyðx,y,tÞ ¼ �
x

r
ð� sinð!tÞJ1ð!rÞ þ cosð!tÞY1ð!rÞÞ

Hzðx,y,tÞ ¼ cosð!tÞJ0ð!rÞ þ sinð!tÞY0ð!rÞ ð13Þ

where r =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
and ! = 13. The computational

domain �, Fig. 1, is a region with its outer and inner
boundary being circles with radii R = 1 and R = 3,

respectively. To test the accuracy of the algorithm in the
absence of additional approximation due to the treat-
ment of absorbing boundary condition, we impose the

exact time-dependent boundary conditions on the
boundary of the computation domain. We present
results corresponding to the use of P4-elements and the

SSP-RK 5 scheme. The relation between the error and
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the number of elements (mesh size) is presented in Table

1, which displays the predicted order 5 convergence.

3. Conclusions

We have proposed a new RKDG method for com-
putational electromagnetics that, for any given k � 0,

attains k + 1 order of convergence in both space and
time while maintaining the time-step proportional to the

mesh size. A novelty of the method resides in the time-
integration procedure for which it resorts to a suitable

extension to non-autonomous systems of the mth-order,
m-stage, low storage SSP-RK method introduced in
Gottlieb et al. [1] for autonomous ordinary differential

equations (ODEs). Numerical example confirmed the
expected high-order rates of convergence. Finally, our
basic considerations clearly extend to higher dimensions

and to other linear, not necessarily hyperbolic, model
equations. In particular, building on the present devel-
opments, forthcoming work on the Maxwell system will
extend our high-order space/time implementations to

full two-dimensional scattering configurations that
include approximations to exact non-reflecting bound-
ary conditions.
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Fig. 1. Typical mesh for the test problem.

Table 1

Convergence study: the errors are evaluated at t = 0.05

P4-elements and SSP-RK5

Ne h L1-error Order L2-error Order

72 1.1785e-01 1.3454e-02 – 4.4463e-03 –

290 5.8722e-02 2.3770e-04 5.7938 1.0076e-04 5.4365

1144 2.9566e-02 8.5100e-06 4.8525 3.8375e-06 4.7623

4556 1.4815e-02 2.8628e-07 4.9092 1.3125e-07 4.8853
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