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Abstract

Bidomain models become increasingly popular for studying and simulating electrophysiological waves in the cardiac
tissue. We study and compare different numerical schemes to solve the bidomain equations. Our analysis is based on

criteria such as the stability and accuracy of the schemes.
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1. Introduction

Bidomain models have become increasingly popular
for simulating electrophysiological waves in the cardiac
tissue (see [1,2] and references therein). Being rather

complex nonlinear models they benefit from the use of
sophisticated solution methods and, because of this, the
focus of the research in the domain has moved over the

years to the application of finite volume and finite ele-
ment solvers over unstructured meshes [3,4].
Researchers also started to investigate the use of implicit

and semi-implicit time-stepping methods to solve bido-
main models [5,6].

In [7], we proposed a fully implicit linear finite element

method working on unstructured meshes composed of
triangles and tetrahedra for solving an anisotropic
bidomain model. The capabilities of the method in
computing 2-D and 3-D re-entrant waves were demon-

strated on arbitrary meshes and, in the 2-D case, some
results were illustrating the numerical requirements of
the method to ensure an accurate simulation of the

dynamics of spiral wave tips. The implicit finite element
method proposed in that paper did not suffer from strict
stability requirements but, on the other hand, its effi-

ciency in term of CPU time requirements turned out to
be critically dependent on the development of fast pre-
conditioned iterative solvers. This paper continues the

work done in [5] by testing different time-stepping
methods, while at the same time offering a theoretical
analysis of the methods’ stability and convergence to the
exact solution.

In the next section, we present the bidomain model

with FitzHugh–Nagumo kinetics behind our simulations
and analyses. In Section 3, the different numerical
schemes are presented. In the last section, we show some
numerical results, including the error associated to our

most important methods.

2. General anisotropic bidomain model

Different formulations of the bidomain equations are
available. For our analyses and simulations, we assumed
that no source current was applied to the system, which

allowed us to write the system as follows:

@u

@t
¼ 1

�
fðu,vÞ þ r � ð�iruÞ þ r � ð�irueÞ ð1Þ

r � ð�iruþ ð�i þ �eÞrueÞ ¼ 0 ð2Þ

where ue is the extra-cellular potential, u is the trans-
membrane potential, and �i and �e are the intra- and

extra-cellular conductivity tensors, respectively. The ion
activity may be represented using idealized FitzHugh–
Nagumo kinetics, which adds an ordinary differential
equation for the ‘ion concentration’ �:

@v

@t
¼ �gðu,vÞ ð3Þ

where g(u, �) = u + � � �� and �, � and � are para-
meters controlling the ion kinetics. This extra ODE is

coupled with the bidomain model by means of the
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fðu,vÞ ¼ u� u3

3
� v ð4Þ

We should also note that in the 1-D case, the bido-

main equations reduce to the so-called ‘monodomain
formulation’. In this case, the two PDEs may reduce to a
single equation:

@u

@t
¼ 1

�
fðu,vÞ þ @

@x

�ðxÞ
1þ �ðxÞ�iðxÞ

@u

@x

� �
þcðtÞ @

@x

1

1þ �ðxÞ

� �
ð5Þ

where �ðxÞ ¼ �eðxÞ
�iðxÞ. In the case where �(x) is a constant

function, the last term of Eq. (5) disappears.

3. Methods and analysis

We solved the Eqs (1)–(3) in 1-D using several
numerical schemes with finite difference and finite ele-

ment methods for the space discretization. Here, only
the finite difference results are shown, as the finite ele-
ment solutions have the same behaviour.

Suppose that Ai and Ae are respectively finite differ-
ence approximations for the operators � @

@xð�i @@xÞ and
� @
@xð�e @@xÞ. For Eq. (1), we used the 	-method, which

writes as

unþ1 � un

�t
¼ 1

�
fðun,vnÞ � Aiðð1� 	Þðun þ uneÞ

þ	ðunþ1 þ unþ1e ÞÞ ð6Þ

with some values of 	, namely 	= 0 (explicit Euler) and
	= 1

2 (Crank–Nicolson). We also tried the semi-implicit
second-order Gear scheme

3
2u

nþ1 � 2un þ 1
2u

n�1

�t
¼ 1

�
fðun,vnÞ � Aiðunþ1 þ unþ1e Þ ð7Þ

and the completely implicit Euler method

unþ1 � un

�t
¼ 1

�
fðunþ1,vnþ1Þ � Aiðunþ1 þ unþ1e Þ ð8Þ

Eq. (2) is always solved in an implicit way:

Aiu
nþ1 þ ðAi þ AeÞunþ1e ¼ 0 ð9Þ

which must be solved simultaneously to Eqs (6), (7) or

(8) unless we use the 	-method with 	 = 0. Then, we
typically solve Eq. (3) with an explicit Euler or Gear
scheme, unless the completely implicit Euler method is

used, in which case it is solved simultaneously to the
other equations with an implicit Euler scheme.
We also obtained analytical stability results for some

of the numerical schemes.

Proposition 3.1 Let um and vm be computed with the
fully implicit Euler scheme (8) for the bidomain model

with the FitzHugh–Nagumo cell model. For any �t < 
�
3

with 
 2]0, 1[,

umk k 20 þ vmk k 20 �
e

3T
�ð1�
Þ

1� 
 u0
�� �� 2

0 þ v0
�� �� 2

0 þ T��2mesð�Þ
� �

ð10Þ

for m = 0, 1, . . ., N, N �t = T, where T is the time at
the last iteration, �k k0 denotes the L2-norm on the space
domain and mes(�) denotes the size of the space

domain. Moreover,

Cð uk kL2ð0,T;H1Þþ uek kL2ð0,T;H1ÞÞ � u0
�� �� 2

0 þ v0
�� �� 2

0þ

T"�2mesð�Þ þ 3

�
ð uk kL2ð0,T;L2Þþ vk kL2ð0,T;L2ÞÞ

for some positive constant C.

Proposition 3.2 Suppose that we compute um with the 	-
scheme (6) with 	 = 0 (explicit Euler) using any ion
dynamics. Then, to ensure stability of um, the following
condition must be satisfied:

�t ¼ O
h2m2

M4

� �
ð11Þ

where h is the size of the space element and the eigen-
values of the tensors �i and �e lie in the interval [m, M].

As well, if we compute vm with the explicit Euler
method, to ensure stability, �t must satisfy

�tðLf

�
�þ �LgÞ < 2 ð12Þ

where Lf and Lg are respectively the Lipschitz constants
of f and g.

4. Numerical results

We solve the bidomain equations in 1-D in the case of
equal conductivities �i = �e = 1.0 with parameters � =

1.0, �= 0.5 and �= 0.1. The domain used is the interval
[0, 70] in space and [0, 40] in time. For an initial con-
dition, we use constant solutions at the equilibrium

values for u, ue and v, except that we already excite u on
the interval [0, 3.5]. This gives a pulse wave that pro-
pagates along the length of the domain.
Since we cannot get an exact solution of the bidomain

equations we use, as a reference, a numerical solution
obtained with the semi-implicit Gear scheme, with 8000
space elements and 50 000 time steps. This solution has

been validated with another precise solution, and it is
therefore precise enough to be used as an ‘exact’ solu-
tion. See Fig. 1 for an image of the solution at different

times.
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Table 1 shows the theoretical and numerical stability
limits for several values of the number N of space ele-
ments. Note that the nonlinearity of Eq. (1) makes the
experimental critical time-step difficult to pinpoint, since

an instability may appear, then be ‘smoothened out’
after a number of time-steps, preventing the solution
from exploding. We have, therefore, given a critical

stability interval instead of a precise value. The smallest
value is the necessary time-step to ensure that no
instability appears while the largest is the necessary time-

step to ensure that the solution will remain bounded.
The theoretical values for the critical time-step follow
from the estimates (10)–(12), evaluating all constants

involved for the 1-D problem.
For the convergence tests, our main result was that

the explicit Euler method appears to be the most
appropriate to this particular problem. Despite its very

strict stability requirements, even with a time step that is
not much smaller than the experimental stability limit,
we reach a degree of accuracy that is not equalled by any

other method we tried, even when we take a time-step as
small as the one we used for explicit Euler. This is an
unexpected result, as Crank–Nicolson is accurate to

second order in time while explicit Euler is only accurate
to first order in time. Figure 2 shows the evolution of the
L2-error of u as a function of time for our four methods,
with 1000 grid points. The error for the implicit Euler

method is shown for a test done with 500 time-steps
instead of 20 000, because the computational resources
that would have been required to do 20 000 time-steps
with this method would have been prohibitive. The L1-

error is not shown here but has a behaviour similar to
the L2-error. We note that often the error sees a peak
soon after t = 0 and again at t = 26 and t = 30. The

first peak may be due to the fact that the wave takes a
few iterations to settle in its correct form, depending on
the method used, and the last two peaks appear because

the wave leaves the domain and may suffer the influence
of the boundary.
To conclude, while the semi-implicit Gear method is

the most stable of all explicit and semi-implicit methods
we tried, it does not seem to offer any substantial
advantage when it comes to the exactness of the
numerical solution. In fact, it seems that the explicit

Euler method yields the most exact solution, probably
because the speed of the pulse wave computed numeri-
cally with explicit Euler converges faster to the actual

speed of the pulse wave. Proving this fact will be a future
orientation of our research. We are also currently
working on finding a theoretical stability limit for the

semi-implicit Gear method, which should not depend on
N, and in the process of doing 3-D simulations using the
bidomain model. Given that we already have experience
with the 3-D bidomain model (see [7]), it should be easy

Fig. 1. ‘Exact’ solution to the bidomain equations at several times t. u: continued line, ue: dashed line, v: dotted line.

Table 1

Numerical and theoretical critical time-steps

Numerical Theoretical

Methods N = 500 N = 1000 N = 500 N = 1000

Explicit Euler 0.0083–0.0095 0.0023–0.0024 0.001109 0.000277

Crank–Nicolson 0.0444–0.1142 0.0229–0.1 0.05 0.05

Implicit Euler > 0.2 > 0.2 0.0333 0.0333

Semi-implicit Gear 0.0667–0.16 0.0667–0.16
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to apply the knowledge gained here to this other
problem.
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Fig. 2. L2-norm of the error on u between different approximations with 1000 grid points and the ‘exact’ solution, with respect to time.

Y. Bourgault, M. Ethier / Third MIT Conference on Computational Fluid and Solid Mechanics 1051


