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Abstract

We present new superconvergence results for the local discontinuous Galerkin method applied to transient diffusion

problems and examine the effect of numerical fluxes on superconvergence. We show that the gradient of the p-degree
discontinuous finite element solution is superconvergent at the roots of the derivative of (p + 1)-degree Radau
polynomial.
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1. Introduction

Discontinuous Galerkin (DG) methods have gained
much popularity in the past 15 years. For a detailed
discussion of the history of DG method and a list of

important citations on the DG method and its applica-
tions consult [1]. The success of DG methods is due to
the following properties: (i) they do not require con-
tinuity across element boundaries; (ii) they are locally

conservative; (iii) they are well suited to solve problems
on locally refined meshes with hanging nodes; (iv) they
have a very simple communication pattern between

elements which makes them ideal for parallel computa-
tions; and (v) they exhibit strong superconvergence of
solutions and fluxes for hyperbolic [2,3,4], elliptic [5] and

convection-diffusion [6] problems.
The local discontinuous Galerkin (LDG) finite ele-

ment method for solving convection–diffusion partial

differential equations was introduced in [7]. Castillo [5]
showed that on each element the p – degree LDG
solution gradient is O(�xp+1) superconvergent at the
shifted roots of the p – degree Legendre polynomial.

Adjerid et al. [6] showed that the LDG method of
Cockburn and Shu [7] for time dependent convection–
diffusion problems exhibits O(�xp+2) superconvergence

of the solution at the shifted Radau points on each
element. For diffusion-dominated problems, they fur-
ther showed that the derivative of the LDG solution is

O(�xp+2) superconvergent at the roots of the derivative
of Radau polynomial of degree p + 1.

In this manuscript we examine the superconvergence
of LDG solutions for a family of numerical fluxes where
the numerical flux considered in [6] is a special case. This

manuscript is organized as follows: in Section 2 we
present a model problem and recall the LDG formula-
tion. In Section 3 we present numerical results for a one-
dimensional linear diffusion problem. We conclude with

a discussion of our findings in Section 4.

2. The local discontinuous Galerkin method

The local discontinuous Galerkin method for con-
vection-diffusion problems was introduced by Cockburn
in [7] and several a priori error estimates have been

established for linear problems [7,8,9]. Here we consider
the scalar convection-diffusion problem

ut � duxx ¼ f, a < x < b, t > 0, d > 0 ð1aÞ

subject to the initial and boundary conditions

uðx,0Þ ¼ u0ðxÞ, a < x < b, uða,tÞ ¼ uaðtÞ,
uðb,tÞ ¼ ubðtÞ, t > 0 ð1bÞ

Following [7], we introduce the auxiliary variable q =ffiffiffi
d
p

ux to define the flux function

h ¼ ðhu,hqÞT ¼ ð�
ffiffiffi
d
p

q,� gðuÞÞ, gðuÞ ¼
ffiffiffi
d
p

u ð2aÞ
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and write Eq. (1) as:

ut þ ðhuÞx ¼ f, qþ ðhqÞx ¼ 0, a < x < b, t > 0 ð2bÞ

In the remainder of this paper we shall use the notation
w = (u, q)t.
Let us partition [a, b] into N subintervals Ij = [xj�1,

xj], j = 1, . . ., N, with �x j = xj � xj�1 and �x = (b �
a)/N. The LDG weak formulation is obtained by mul-
tiplying Eq. (2b) by a test function (v, r) and integrating
by parts to obtain

ðut,vÞj � ðhu,vxÞj þ huv
x�j
xþ
j�1

���� ¼ ðf,vÞj

ðq,rÞj � ðhq,rxÞj þ hqr
x�j
xþ
j�1

���� ¼ 0, 8 v, r 2 H1 ð3Þ

where the left and right limits are defined as
zðx�i Þ ¼ lim

x!xi;x<xi
zðxÞ and zðxþi Þ ¼ lim

x!xi;x>xi
zðxÞ,

respectively.
The element inner product is defined as

ðu,vÞj ¼
Z xj

xj�1

uvdx

We construct a finite dimensional space VpN of dis-

continuous piecewise polynomial functions such that

VpN ¼ fVjV jIj 2 Ppg ð4Þ

where Pp denotes the space of polynomials of degree p.

The discrete LDG formulation consists of finding U
and Q 2 VpN such that

ðUt,VÞj � ðhU,VxÞj þ ĥUV
x�j
xþ
j�1

���� ¼ ðf,VÞj ð5aÞ

ðQ,RÞj � ðhQ,RxÞj þ ĥQR
x�j
xþ
j�1

���� ¼ 0, 8 V, R 2 VpN ð5bÞ

If Pp(�) is the Legendre polynomial of degree p, we shall
refer to Rþpþ1 and R�pþ1 as the right and left p + 1-degree
Radau polynomials, respectively, which are defined as

R�pþ1ð�Þ ¼ Ppþ1ð�Þ � Ppð�Þ, � 1 � � � 1 ð6Þ

The weak problem (5) is subject to the initial condi-

tion U(x, 0) 2 VpN obtained by interpolating u0 on each
interval at the shifted roots of Rþpþ1.
Since the trial function is discontinuous, the fluxes at

the end points in (a, b) are replaced by the following

numerical fluxes

ĥðW�,WþÞ ¼ ð�
ffiffiffi
d
p

�Q,�
ffiffiffi
d
p

�UÞt � �
ffiffiffi
d
p

2
ð½Q�,� ½U�Þt,

�1 � � � 1 ð7aÞ

whereW= (U,Q)t, [u] = u+� u� and �u= (u+ + u�)/2.

The numerical flux at the boundary points is well
defined by setting

ðu,qÞða�,tÞ ¼ ðuaðtÞ,qðaþ,tÞÞ, ðu,qÞðbþ,tÞ ¼ ðubðtÞ, qðb�,tÞÞ
ð7bÞ

and write the flux as

ĥUðbÞ ¼ �
ffiffiffi
d
p

Qðb�Þ þmaxf1,pNgd=�xNgðuðb,tÞ
�Uðb�ÞÞ, for � ¼ 1 ð7cÞ

ĥUðaÞ ¼ �
ffiffiffi
d
p

QðaþÞ þmaxf1,p1gd=�x1gðUðaþÞ
�uða,tÞÞ, for � ¼ �1 ð7dÞ

The function hQ at the boundary points is obtained from

(7a) and (7b).
Adjerid et al. [6] studied the case � = 1 and here we

present results for the case � = �1.

3. A computational example

Let us consider the problem (1) with d = 1 on (�1, 1)
and select the boundary and initial conditions such that

the exact solution is uðx,tÞ ¼ e��
2t sinð�xÞ. We solve the

problem on a 16-element uniform mesh using p = 1 to 4
and 0 � t � 0.5 with �= �1. The errors shown in Figs 1

and 2 suggest that on (xi�1,xi) we have

uðx,tÞ �Uðx,tÞ ¼ aiðtÞ þ biðtÞR�pþ1ðxÞ,

qðx,tÞ �Qðx,tÞ ¼ ciðtÞ þ diðtÞRþpþ1ðxÞ ð8Þ

Thus, the solution gradient is superconvergent at the
shifted roots of R�0pþ1(x) while the derivative Qx of the

auxiliary variable is superconvergent at the roots of
Rþ0pþ1(x). For �1 < � < 1 we did not observe any
pointwise superconvergence.

4. Conclusion

Our computational results show that the derivative of

the LDG solution is superconvergent at the shifted roots
of R�0pþ1(x) for � = �1, respectively. The results for � =
�1 are useful in computing efficient a posteriori error
estimates that may help improve the the accuracy of the

solution and/or steer the adaptive refinement process.
We did not observe any pointwise superconvergence for
�1 < � < 1. Currently, we are investigating super-

convergence for nonlinear and multi-dimensional
problems using rectangular and triangular meshes.
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Fig. 2. True errors (q � Q)x(x, 0.5) on a 16-element uniform mesh for p = 1 to 4 (upper left to lower right). The shifted roots of

R+0
p+1 (x) are marked by +.

Fig. 1. True errors (u � U)x(x, 0.5) on a 16-element uniform mesh for p = 1 to 4 (upper left to lower right). The shifted roots of

R�0p+1 (x) are marked by +.

S. Adjerid, D. Issaev / Third MIT Conference on Computational Fluid and Solid Mechanics1042



posteriori error estimation for discontinuous Galerkin

solutions of hyperbolic problems. Computer Meth in App

Mech and Eng 2002;191:1097–1112.

[3] Adjerid S, Massey TC. A posteriori discontinuous finite

element error estimation for two-dimensional hyperbolic

problems. Comp Meth in App Mech and Eng

2002;191:5877–5897.

[4] Adjerid S., Massey TC. Superconvergence of dis-

continuous finite element solutions for nonlinear

hyperbolic problems, Submitted, 2003.

[5] Castillo P. A superconvergence result for discontinuous

Galerkin methods applied to elliptic problems. Comp

Meth in App Mech and Eng 2003;192:4675–4685.

[6] Adjerid, S. Klauser A. Superconvergence of discontinuous

finite element solutions for transient convection–diffusion

problems. J of Sci Comp 2005; (to appear).

[7] Cockburn B, Shu CW. The local discontinuous Galerkin

finite element method for convection–diffusion systems,

SIAM Journal on Numerical Analysis 1998;35:2440–2463.

[8] Castillo P, Cockburn B, Perugia I, Schotzau D. An a

priori error analysis of the local discontinuous Galerkin

method for elliptic problems. SIAM Journal on Numerical

Analysis 2000;38:1676–1706.

[9] Castillo PE. Discontinuous Galerkin methods for con-

vection–diffusion and elliptic problems, PhD thesis,

University of Minnesota 2002.

S. Adjerid, D. Issaev / Third MIT Conference on Computational Fluid and Solid Mechanics 1043


