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Abstract

We formulated a Wigner function-based model for quantum well (QW) lasers. This model has benefits over other

models as it is less phenomenological and can be generalized easily to incorporate additional effects. We start with
standard non-equilibrium Green’s functions and apply the Wigner transformations as well as some key techniques to
get a complete system of equations. We include bias potential and electromagnetic interactions. We will also discuss

some of the possible generalizations.
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1. Introduction

A challenge in modelling quantum well (QW) lasers is
to find a model that is computationally practical but can

still model complicated interactions. Without such a
model, predictions and design of novel devices, espe-
cially those that rely heavily on quantum mechanical
effects, are limited. In this paper, we present a model

based on Wigner functions and the quantum Boltzmann
equation (QBE).
There are two methods that we can use to arrive at the

QBEs, depending on the nature of interactions under
study and the detail desired. These are represented
schematically in Fig. 1. For more complicated interac-

tions such as general phonon and Coulombic scattering,
it is most convenient to start with non-equilibrium
Green’s functions (starting point 1 in Fig. 1) and evo-

lution described by Dyson’s equations to arrive at stage
a of Fig. 1. We then apply a Markovian approximation,
the Kadanoff–Baym ansatz and the Wigner–Weyl
transformation to arrive at the Wigner function for-

mulation and the QBEs (stage c of Fig. 1). If the
interactions are classical or of Boltzmann form, then we
can describe the system with density matrix theory and

the quantum Louiville equation (stage b of Fig. 1) by
using Heisenberg’s equation of motion. A Wigner–Weyl
transformation is then applied to arrive at the Wigner

functions and QBE. If we wished, we could go from

stage a to stage b and then stage c, but it is more con-
venient to skip this intermediate step as far as the
Green’s functions are concerned. Finally, we perform

various simplifying approximations to arrive at the final
form of the QBE’s to be solved (stage d of Fig. 1).

Fig. 1. Schematic relation between methods used in this paper.
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In the Green’s function form, interactions are incor-
porated rigorously through the self-energies. In this

paper, we discuss the applied bias potential and classical
electromagnetic interactions. Phonon and Coulombic
interactions can be incorporated but will be represented

here only as a general scattering term and will be written
as a Boltzmann term in the final set of equations for
simplicity (therefore, in this work we could begin at

starting point 2 instead of 1, but we choose the latter for
demonstration purposes).

In relation to other work, the final QBEs are based on
Wigner models for describing the electron and hole

distributions in resonant tunnelling diodes [1] and QWs
[2]. We extend that approach to the laser by incorpor-
ating the off-diagonal elements that will be coupled (to

first order) via the electromagnetic interactions. The
electric field will be related to the off-diagonal elements
of the QBE, which essentially are the polarization

functions.

2. Brief description of Green’s functions-based model

Our approach is based on the standard non-equili-
brium single-particle Green’s functions: the advanced

Ga, retarded Gr, time-ordered Gt, anti-time-ordered G
�t

and G<, G>. These have standard definitions and we
write them in Craig’s matrix form ( ~G) [3,4]. Expanding

into a Bloch function basis, we can write the Green’s
functions as

~Gðx1; x2Þ ¼
X
i;j

uiðr1Þ u�j ðr2Þ ~Gi;jðx1; x2Þ ð1Þ

where x = (r, t) and ui (r) are functions for each band

periodic in the unit cell. The evolution of the Green’s
functions is governed by Dyson’s equations [4] and can
be shown to be
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The self-energies ~� are defined in a similar fashion to
the Green’s functions. Hio(r) is the unperturbed Hamil-
tonian � �h2

2m�
i

r2
r þ ViðrÞ; while m�i and Vi(r) are the

effective mass and heterostructure potential of this band.
The self-energies considered explicitly here are the

slowly varying applied bias Vapp and classical electro-
magnetic field E. The self-energy for a classical

interaction has a standard form [3,4].
Next, we transform from the Green’s functions and

Eq. (2) to the Wigner functions and the QBE (stages a–c

in Fig. 1). We perform the following transformations:

1. Change to the centre-of-mass variables and perform
the Wigner–Weyl transformation [1].

2. Perform the generalized Kadanoff–Baym ansatz [5].
3. Apply the Markovian approximation, which in this

format is an integration over the variable !. Addi-

tionally, we have used the rotating wave
approximation and a two-band model (c, conduc-
tion; v, valence). The electric field is separated into

slow and fast (at optical frequency �op) varying
components and we use a rotating wave approx-
imation and Boltzmann scattering.

For a self-consistent formulation, we have to find

expressions for the electric fields. The relations between
macroscopic polarization and the off-diagonal Wigner
functions are known [6].

The electric field is related to the macroscopic polar-
ization by Maxwell’s equations. Therefore, after some
manipulations, we can write the electric field in terms of

the off-diagonal Wigner functions.
Finally, because we started with a classical interaction

approximation to the electric field, we need to add in

spontaneous emission by hand in order to start the
lasing process. We use a quantum Langevin approx-
imation [7] in which we add a random Langevin force to
the QBE of the off-diagonal Wigner function to model

the spontaneous emission.
Additionally, in order to speed up the calculations, we

perform a number of simplifying approximations:

1. Transform to electron-hole representation.
2. Integrate over space directions.
3. Integrate over momentum directions.

4. Use an off-diagonal correlation function.
After these mathematical manipulations, we arrive at

our equations in the final form.

3. Results and discussion

We applied the present formalism with a relaxation
time approximation for a structure consisting of five
layers, two barrier layers of length 15 nm and

In0.72Ga0.28As0.61P0.39 composition and a 7-nm well with
composition In0.53Ga0.47 As. The outer cladding and
substrate were taken to be 20-�m InP layers. Our results

for this structure at steady state are presented in Figs 2–
4. In Fig. 2, we show the heterostructure plus applied
bias and electrostatic effects for three applied biases.

Figs 2 and 3 show the electron and hole concentrations
in the structure for two different applied biases with and
without electromagnetic interactions included. From
Figs 3 and 4, we see that the electromagnetic interaction

reduces carrier densities within the well region. The
density reduction is a result of recombination of the
electrons and holes to produce laser light output.

The model presented lays the foundation for later
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work analysing QW lasers in detail. It will be useful in
modelling novel devices such as the tunnelling injection
laser [8,9], in which the carrier injection is hypothesized

to occur via phonon-assisted tunnelling. Further in the

future, it will be useful to incorporate more detailed
bandstructures by adding in more self-energy terms to

describe the interband spin-orbit coupling.
We have formulated a Wigner function model for the

QW laser. We approximated scattering processes in the

Boltzmann form. However, this formulation is ideally
suited for incorporating of explicit phonon and Cou-
lombic interactions, which we intend to incorporate in
the future to investigate devices such as the tunnelling

injection laser. We have used a two-band model above,
but this can be generalized to multiple and non-para-
bolic bands [5], which is more computer-intensive. More

details can be found in Wartak and Weetman [10].
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