
Finite element modeling of a two-fluid RF plasma discharge

Haribalan Kumar, Subrata Roy*

Computational Plasma Dynamics Laboratory, Kettering University, Flint, Michigan 48504, USA

Abstract

The design and understanding of plasma and its bounding sheath requires an effective modeling technique that is
both adaptable to arbitrary geometry and time accurate. We present a finite-element-based model for two-fluid plasma.

The continuity and momentum equations for electrons and ions are solved simultaneously with the Poisson equation,
using an efficient subgrid-embedded algorithm. The model does not involve any conventional patching techniques at the
plasma–sheath interface. The solutions are interpreted using the speed of ionization as one key parameter determining

collisional sheath behavior. Numerical limitations are also analyzed from the theoretical derivation of solution
amplification factor and phase velocity.
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1. Introduction

There have been a number of attempts to model the
dynamics of plasma and sheath, such as those by God-

yak and Sternberg [1], Nitschke and Graves [2], Boeuf
and Pitchford [3], and Roy et al. [4]. A part of the lit-
erature on the plasma–sheath modeling suggests that

this transition can be modeled separately by matching
step–sheath model and bulk-plasma model [1]. However,
it is not clear how properly to match the sheath to the

bulk plasma for a time dependent sheath [2]. Hence we
focus on simulation of radio frequency (RF) interactions
with fluids from first-principles. A combined plasma-
wall model is appropriate where the space charge effect

is incorporated for the entire region [3]. Recently, a one-
dimensional formulation of the same has been reported
[4]. While the model describes the RF system, the

detailed results for number densities and currents are not
documented. Here we report the details of the simula-
tion results for a RF-based discharge in low pressure

regime with its bounding collisional sheath.

2. The plasma wall problem

The solution of plasma extending from the bulk up to
and including the wall is modeled here using one-

dimensional hydrodynamic equations for electron and

ion, coupled with the Poisson equation for potential.

2.1 Model

The continuity and momentum equations are given by
[3,4]

@n�
@t
þ @ðn�V�Þ

@x
¼ ne� for � ¼ e,i with n�V� ¼
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The ionization rate for argon gas is � = Ae�B/(E/p)
0.4

p<.
We introduce < (with dimension m/s) as the ‘speed of

ionization’ to model the spatially and temporally vary-
ing ionization where <= �eE as given by the ‘modified’
ionization equation. The following Poisson equation is

used to calculate the potential drop across the working
gas argon of dielectric constant 
 (with a relative per-
mittivity �1.0055):

"
@2’

@x2
¼ eðne � niÞ ð2Þ

where e is the elementary charge. The electrons are at a
temperature of Te = 1eV (11,600K) and the ions are

assumed cold at 300K. The electrode at x=0 is groun-
ded, while a time-varying potential ’rf = ’rms sin 2	 ft
with ’rms=100V and f=13.56MHz is applied at x =

2cm. The gas pressure is 0.1 Torr.
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2.2 Boundary conditions

The problem is considered in its entirety without
imposing any conditions at plasma edge for solving the
bounding sheath. The sheath edge is identified using Vi/

VB = [1 + �]�0.5 for the collision parameter � =
0.5	�D/�i where �D is the Debye length, the effective ion
mean free path �i(cm) �1/330P (in torr), and VB is the

ion sonic (Bohm) velocity.
The electron flux at the electrodes is based on the

thermalized electron velocity whose magnitude is given
by Ie = 1

4neVe,th. Homogeneous Neumann boundary

condition (@ni/@z=0) is applied for ions at electrodes.
For the Poisson equation we used ’(0) = 0 and ’(2) =
’c where ’c is calculated from the following current

balance

ItotðtÞ ¼ "
@E

@t
þ eniVi � eneVe ð3Þ

The equations (1)–(3) are normalized using the following

dimensionless quantities, � = 2	 ft, z= x/d, S= �d/VB,
N� = n�/n0, u�=V�/VB and �= e’/Te where d is inter-
electrode length.

3. Numerical methodology

We utilized multiscale ionized gas (MIG) flow code
anchored in a powerful high-fidelity finite-element pro-

cedure that has been benchmarked and validated against
a range of plasma wall problems [5,6]. Here the meth-
odology is adopted to overcome the stiffness of the

above system of equations, Eqs. (1)–(3).

3.1 Galerkin weak statement (GWS)

For the stated RF bounded plasma discharge, the

equation set can be written with operator L, as L(q) = 0
where q = {Ni, Ne, �}

T. Multiplying with a permissible
test function � and integrating over the spatially dis-

cretized solution domain �, the variational statement

results in the weak form WSh ¼ Se

R
�e

½�LðqÞd� �
 !

e

¼ 0

for a discretization h of domain � = [�e and Se is the

non-overlapping sum over the elements. Thus the GWS
form of Eq. (1) becomes
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where F� is the solution residual, and the GWS form of
Eq. (2) with residual F� is
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The terminal non-linear ordinary differential equation

(ODE) systems derived from Eqs. (4)–(5) are solved
using implicit Euler method and N-R iterative algo-
rithm. The domain is discretized into 200 elements and  
is interpolated using a linear basis function. The Jaco-

bian matrix J = [@F/@Q] in [J].{@Q} = �{F} is resolved
using LU-decomposition scheme for updating change in
discretized solution vector Q at each iteration. The

convergence criterion for all variables at any iteration is
10�3.

3.2 Amplification factor and phase velocity

The stability of the above algorithm in section 3.1 can

be investigated from the solution amplification factor
Gh, its magnitude jGhj and the relative phase velocity �h.
For example, based on the finite element stencil for Eq.

(4) one may derive the following factors for ions:

Gh ¼ ½1� 3iCfð!�xÞ � S�tðcos 
þ i sin 
Þ��1 ð6Þ

Gh
�� �� ¼ ð1� S�t cos 
Þ2 þ ð3Cfð!�xÞ þ S�t sin 
Þ2


 ��0:5
�h ¼ tan�1

ð3Cfð!�xÞ þ S�t sin 
Þ
ð1� S�t cos 
Þ

� 
�
�C!�x ð7Þ

while those for electrons are:

Gh ¼ ½1� 3iCfð!�xÞ � S�t��1;

Gh
�� �� ¼ ½ð1� S�tÞ2 þ ð3Cfð!�xÞÞ2��0:5 ð8Þ

�h ¼ tan�1
3Cfð!�xÞ
ð1� S�tÞ

� 
�
�C!�x ð9Þ

where ! is the wave number, �x is the length of an

element, C is the Courant number, fð!�xÞ ¼ sin!�x=
ð2þ cos!�xÞ and 
 ¼ �ðuhe � uhi Þ!ðnþ 1Þ�t is the
relative velocity phase angle.
The algorithm is stable if jGhj � 1. One prefers �h � 1

to minimize the loss of information during solution
process. Figure 1 plots jGhj and �h as functions of !�x
and C for 
= 0 (hence true for both ions and electrons).

Obviously, for the higher value of ionization rate S2 =
500, the solution becomes unstable. The numerical dif-
ficulty may be handled by the appropriate selection of

Courant number and the introduction of artificial
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diffusion. Interestingly, any further increase of S (>
500) brings the system back to stability (not shown in
the fig.). This demonstrates a nice balance between S�t

and Cf (!�x) that will be elaborated in an ensuing

paper.

4. Results and discussions

Figures 2–4 describe the computed solution using the

methodology stated above. The momentary rise of the
electron wave at the alternate electrodes in Fig. 2 at
every 	/2 and 3	/2 radians shows a typical RF char-

acteristic. For most of the remaining time, the charge-
separated sheath region is mostly devoid of electrons.
Fig. 3 shows the variation of total current as given by

Eq. (3) with the computed potential. The periodicity of
the peak total current is observed near (	/2 + 2p	)
radian; p 
 0 is an integer.
Finally, Fig. 4 plots the sheath edge as identified in

section 2.2. The difference in normalized sheath thick-
ness at the grounded left electrode (SL) and the powered
right electrode (1-SR) shows an expected 2	 periodicity

between the points of extremum sheath locations with a

Fig. 1. Amplification factor (jGhj) and relative phase velocity (�h) for different Courant numbers (CFL), and ionization rates S1 = 5

and S2 = 500.

Fig. 2. Temporal evolution of normalized electron number

density (Ne).

Fig. 3. Periodic nature of the potential and normalized total

current at the powered electrode.

Fig. 4. Temporal oscillation of left (SL) and right (1-SR) nor-

malized sheath width.
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phase lag of 	 radian for the left electrode. An
approximate relation for left and right side normalized

sheath thickness can be estimated as S � 0.04 
 0.03 sin
2	 ft with an error of �4%.

In summary, we developed a two-fluid algorithm for

predicting RF discharges and successfully demonstrated
its implementation into the MIG code. Results for the
charge distributions, current, and sheath details have

been documented. In the future, the model will be
extended for analyzing two-dimensional RF plasma
discharge.
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