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Abstract

A complex mathematical model for simulating phonation of the Czech vowel /a/ is presented. The model is based on

simulation of the airflow-excited self-sustained vocal fold oscillations, where the non-linear aerodynamic terms and the
Hertz model of the contact (collision) forces between the vocal folds are taken into account. The output signals
(intraglottal pressure or glottal airflow rate) in the time domain are used for excitation of the finite element (FE) model

of the acoustic spaces of the human vocal tract obtained from magnetic resonance imaging (MRI).
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1. Introduction

A two-degrees-of-freedom aeroelastic model was
developed recently [1]. It allows the study of the post-

critical behaviour of the system after losing the stability
and numerical simulations of self-oscillations of the
vocal folds during phonation. The Hertz model for

impact forces between the vocal folds and non-linear
dynamic and aerodynamic forces is implemented into
the aeroelastic model. The inviscid incompressible one-

dimensional fluid flow theory is used to express the
unsteady aerodynamic forces. The parameters of the
model, i.e. the mass, stiffness and damping matrices, are

related approximately to the geometry, size and material
density of the real vocal folds as well as to their known
or prescribed fundamental natural frequencies and
damping. In this paper, the outputs of the numerical

simulations, i.e. the intraglottal pressure or airflow
velocity flow rate in the glottis, are used for excitation of
the finite element (FE) model developed by Dedouch et

al. [2] for the acoustic spaces of the human vocal tract in
the Czech vowel /a/.
A more clinically oriented study, based on different

models of the vocal folds and vocal tract, was published

by Titze [3] focusing on similar time domain simulations
of radiated mouth pressure excited by the glottal airflow
simulated by a bar-plate model for vibration of the vocal

folds.

2. Mathematical model of the vocal folds

A vibrating element of the length L with mass m and
moment of inertia I with two degrees of freedom (rota-

tion and translation T
V=[V1(t),V2(t)]=[(w2�w1)/

2l,(w1+w2)/2]) supported by an elastic foundation and
vibrating in the wall of a channel conveying air is used to

approximate the vocal fold oscillations (Fig. 1). Vibra-
tions of one vocal fold are modelled by the equations of
motion of an equivalent three-mass system on two

springs [1]:

�M €Vþ �B _Vþ �KVþ F ¼ 0, ð1Þ

where �M, �B and �K are the mass, damping and stiffness

(2�2) matrices, respectively, and the aerodynamic
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excitation forces F are given by the perturbation pres-
sure ~p(x,t) of the fluid flow in the glottis:

F1 tð Þ ¼ h
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where h is the channel depth, the distances l and L1

define the two springs positions, and �B = �"1 �M + �"2�K is

assumed.
Aerodynamic forces are calculated from the unsteady

Euler and continuity equations:
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where A(x,t) = hH(x,t) is the channel cross-sectional

area, �t and U(x,t) are the fluid density and velocity,

respectively, and P(x,t) is the pressure. After separation
of steady and unsteady components:

U x,tð Þ ¼ �U0 xð Þ þ ~u x,tð Þ, P x,tð Þ ¼ P0 xð Þ þ ~p x,tð Þ,
H x,tð Þ ¼ H0 � w x,tð Þ � a xð Þ: ð4Þ

Eq. (3) yields the following equation for the pertur-
bation velocity and pressure:
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Introducing the velocity potential ~u = @�/@x, the
perturbation pressure can be expressed as

~p x,tð Þ ¼ ��t
@�
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Considering small vibration amplitudes jwj � H0 and
the following boundary conditions at the channel inlet

and outlet ~u = 0 jx=0, ~p=0 jx=L, the non-linear per-
turbation pressure can be expressed as

~p x,tð Þ ¼ ��
X2
i,j¼0

X2
k,l¼0

Ki,j,k,l xð Þ VðiÞ1 tð Þ
h ik

V
ðjÞ
2 tð Þ

h il
, ð7Þ

where the superscripts above V1 and V2 denote the
order-of-time derivatives and the coefficients Ki,j,k,l(x)
are complicated algebraic expressions and functions

given by the integrals [1].
The Hertz model of impact force FH is considered for

the vocal fold collisions:

FH ¼ kHy
3=2 1þ bH _yð Þ, kH ffi

4
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, ð8Þ

where E is the Young modulus, � is the Poisson ratio

and r is the radius of the impacting surfaces.
The input parameters for numerical analysis were

derived from the data known from the literature for the

vocal folds. The geometry of the vocal fold was
approximated by the function a(x) = a1x + a2/2x

2 =
1.858�159.86 x2[m]. From here, the coordinates of the
contact point can be determined:

xmax ¼ min L,max 0,� V1 þ a1ð Þ=a2½ �f g,
ymax ¼ y xmaxð Þ ¼ a xmaxð Þ þ xmax � L1ð ÞV1 þ V2:

The impact Hertz force can be expressed as FH =
kH(ymax � H0)

3/2, where kHffi730Nm�3/2 for E=8kPa

and �=0.4 and where the damping coefficient was
neglected ðbH ¼ 0Þ;H0 ¼ max

x2<0,L>
aðxÞ þ g is the height

of the channel and g is the glottal half-width. A cor-
rection on the static subglottal pressure, which is
constant during the vocal folds collision, gives after

integration of the pressure psub in the interval x 2 < 0,

Fig. 1. Model of the vocal fold.
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xmax> the resulting forces in Eq. (1) during vocal folds
contact:

F1 ¼ FH
L1 þ l� xmax

2l
þ psubhxmax

L1 þ l� xmax

2

2l
,

F2 ¼ FH
xmax � L1 þ l

2l
þ psubhxmax

xmax

2 � L1 þ l

2l
: ð9Þ

For numerical simulations, Eq. (1) was transformed
into the system of four first-order ordinary differential
equations:

Z
0

1 ¼ f̂1 Z1,Z2,V1,V2ð Þ, Z
0

2 ¼ f̂2 Z1,Z2,V1,V2ð Þ,V01 ¼ Z1,

V
0

2 ¼ Z2 ð10Þ

and the fourth-order Runge–Kutta method was used for

the calculations. The functions f̂1, f̂2 are determined
differently for non-contact and contact regimes by Eqs.
(2) and (9).

The density, thickness and length of the vocal folds
were taken as follows: �h=1020 kg/m3, L=6.8mm and
h=10mm. From these data, we calculated the eccen-

tricity e, the total mass m and the moment of inertia I;
the air density was considered as �t=1.2 kg/m3, L1=L/2
and l=0.344L. A tuning procedure was used to adjust
the stiffness (c1,c2) of the elastic foundation and the

damping coefficients �"1, �"2 in order to approximate the
pitch frequency F0ffi100Hz, setting the natural fre-
quencies f1=100Hz, f2=105Hz and 3 dB half-power

bandwidths of both resonances in correspondence to the
physiological data (�f1=23Hz and �f2 =29Hz).

3. Finite element model of the vocal tract

The geometry of vocal tract shape for the vowel /a/
was obtained from a native Czech speaker using mag-
netic resonance imaging (MRI). An automatic

procedure was developed that enabled us to transform
the MRI data directly into the FE model (Fig. 2). The
acoustic pressure p inside a cavity is described by the

equation

r2p ¼ 1

c20

@2p

@t2
, ð11Þ

where co is the speed of sound. For the vocal tract walls,
the boundary condition on the acoustically hard area
@p
@n ¼ 0 is considered, where n is the direction of the
normal to the boundary area. At the mouth, the
boundary condition is, in this first approximation,

assumed as p=0. The equation of motion for the
acoustic pressure in the FE formulation can be written
in matrix form in the global coordinate system as

M €Pþ B _Pþ KP ¼ fðtÞ ð12Þ

where M, B and K are the mass, acoustic boundary

damping and stiffness matrices, respectively, and P and f

are the vectors of nodal acoustic pressures and excita-
tion forces. The effect of outgoing acoustic energy was
modelled by an absorption boundary condition at the

lips, where the boundary admittance was prescribed in
correspondence to the 3-dB half-power bandwith known
for formant (acoustic resonant) frequencies. The tran-

sient analysis with the Newmark integration method was
used for numerical simulation of the acoustic signals
near the lips when the excitation was applied at the

position of the vocal folds. The excitation signal was the
intraglottal pressure ~p(t) = ~p(x,t)jx=L�0.5min

or the air-
flow volume velocity Q(t) resulting from the aeroelastic
model of the vocal folds.

4. Results

An example of the excitation signal Q(t) received from

the aeroelastic model and the simulated time response of
the vocal tract obtained for the acoustic pressure p(t)
near the lips are shown in Fig. 3. It is possible to see that

after two to three airflow volume velocity pulses, the
response is stabilized and becoming periodical. The
input and output signals in the frequency domain are
shown in Fig. 4, together with the transfer function

HQp(f) between them, from which it is possible to detect
the first two formant frequencies near 670Hz and
1070Hz, which are in a reasonable agreement with

known phonetic data [4].

Fig. 2. FE model of the vocal tract for the vowel /a/.
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5. Conclusions

A joint aeroelastic model for the vocal fold self-
oscillations with the FE model of the vocal tract was
presented. The aeroelastic model generates the intra-

glottal pressure and airflow rate. These signals were used
for acoustic excitation of the vocal tract at the position
of the vocal folds. Both ways of excitation, i.e. by

pressure or airflow volume velocity pulses, resulted in a
good approximation of the voice signal for the modelled
vowel /a/. The spectrum of the acoustic pressure near the

lips contains many harmonics and the first two formants

are in good agreement with measurement in humans.

This was also checked perceptually by listening to the
sound from the wav files generated by the output signals.
The generated signal sounded more natural when exci-
ted by the airflow volume rate than when excited by the

glottal pressure.

Acknowledgement

Research is supported by the Grant Agency of the

Czech Republic within the project 106/04/1025

Fig. 4. Spectra of the input flow pulses, output pressure and vocal tract transfer function.

Fig. 3. Glottal airflow rate and pressure near the lips.

J. Horáček et al. / Third MIT Conference on Computational Fluid and Solid Mechanics 987



Modelling of vibroacoustic systems focusing on human
vocal tract.
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