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Abstract

This work extends previous open-loop simulations of an idealized, diaphragm-type ventricular assist device by

coupling it in a closed loop to a three-dimensional model of the systemic circulatory system. The successes, challenges,
and limitations of this model are discussed.
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1. Introduction

Ventricular assist devices (VADs) are medical devices
that are connected to failing hearts to help them pump a
sufficient amount of blood through the body. Many

different types of VADs have been built or are in
development. This research is focused on an idealized
diaphragm-type VAD design related to a model used at
Brunel University, for which some experimental and

numerical results are available for comparisons [1–3].
The current VAD model incorporates interaction of the
diaphragm with blood flow and is coupled to a three-

dimensional representation of the systemic circulatory
system in a closed loop.

2. Model

The present VAD model consists of two hemispherical
fluid chambers, separated by a flexible circular dia-

phragm, as shown in Fig. 1. The blood chamber design
is the same as that in the Brunel University VAD [3],
while the driving fluid chamber was designed to com-

plement the blood chamber. The blood chamber was
designed to be twice as large as an actual VAD, with
diameters of 140mm for the hemisphere and 38mm for

the inlet/outlet tubes. A major improvement of the
current model over the Brunel University model is the

use of a fully interactive flexible diaphragm rather than a
rigid hemispherical piston with prescribed motion. In a

previous study, simulations of blood flow, with the VAD
model operated in open loop, were partly validated
versus available experimental results [4]. The present

simulations extend this work by connecting the VAD in
closed loop to the circulatory system model described
below.
The closed-loop model consists of the previously

described VAD coupled to a three-component repre-
sentation of the systemic circulatory system, as shown in
Fig. 1. The circulatory system model consists of two

elastic tubes, which simulate the total arterial and
venous compliances, respectively, and an isotropic por-
ous medium, which simulates the total peripheral

resistance.
Simulations were performed using the commercial

finite element package ADINA version 8.1. A slightly

Fig. 1. Closed-loop geometry.
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compressible fluid model was used for blood and our
driving fluid, water, due to the difficulty in satisfying a

conservation of volume inside a closed system with
moving boundaries. The governing equations for the
fluid model are the arbitrary-Lagrangian-Eulerian

(ALE) forms of the continuity and Navier–Stokes
equations for slightly compressible fluids, defined,
respectively, as:
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where � is density, � is the fluid bulk modulus, p is
pressure, t is time, v is the fluid velocity vector, w is the

mesh velocity vector, �m is a compressible fluid density,
defined as �m ¼ � 1þ p

�
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, � is the stress tensor, and f B is

the body force per unit volume.

Flow in the porous medium is calculated using the
following form of Darcy’s law:

�k�1 � �v ¼ �rpþ f B ð3Þ

where � is the fluid viscosity, k is the isotropic perme-

ability tensor, and �v is the superficial velocity, which is
the average velocity over the entire cross-sectional area
of the porous medium.

The density and viscosity of water were taken as � =
999kg/m3 and � = 1.00� 10�3 kg/ms, with the bulk
modulus of water chosen as � = 1.00� 1010 kN/m2 to

limit the water compressibility. For blood, �= 1105kg/
m3, � = 4.66� 10�3 kg/ms, and � = 1.00� 105 kN/m2.
For the porous medium, the permeability was set to a
uniform value of 1.00� 10�4m2.

The diaphragm and the two elastic tubes are modeled
as linear elastic materials with large displacements and
small strains. All three solids are modeled as nearly

incompressible with a Poisson ratio of 0.495 and a
density of 1000 kg/m3. For the diaphragm, the Young’s
modulus is Ed = 1.00� 108 kN/m2 and for the two

elastic tubes, it is Et = 7.50� 104 kN/m2.
In ADINA, the fluid and solid models are defined

separately and coupled during the solution process

through coincident fluid–structure interaction (FSI)
boundaries. The solution to this FSI problem was
obtained using an iterative solver.
Flow in the system is driven by a sinusoidal pressure

function applied at the entrance of the driving fluid
chamber with a maximum amplitude of 215MPa. This
pressure forces water into and out of the driving fluid

chamber, causing the diaphragm to deform back and
forth and forcing flow around the loop. The reason that
such high pressures were used was that at low values of

the Young’s modulus of the diaphragm, the solution did

not converge. While increasing Young’s modulus, it
became necessary to also increase the driving fluid

pressure in order to achieve the desirable diaphragm
deformation.
Flow direction is controlled by instantly opening and

closing valves at the interfaces between the VAD and the
circulatory system model. The fluid geometry is meshed
using four-node tetrahedral mini-elements, and the solid

geometry is meshed using nine-node mixed interpolation
of tensorial components (MITC) shell elements.

3. Results

Representative results of the simulations are presented
in Fig. 2 at the two times during the cycle at which the
diaphragm has reached its extreme deformations. It can

be seen that as the diaphragm deforms into the blood
chamber, the walls of the elastic tubes expand, and as
the diaphragm deforms into the driving fluid chamber,

the walls contract. The closed-loop results for the flow
inside the blood chamber have been compared with our
previous open-loop results [4]. Fig. 3a shows velocity
magnitude variations at the center of the inlet of the

blood chamber during one cycle, and Fig. 3b shows the
variations of the x-velocity at a point inside the blood
chamber. At both of these locations, the closed-loop

model predicts much lower blood velocities than does
the open-loop model. This difference is due to blood
compressibility, and not differences in diaphragm dis-

placement, which, in the closed-loop case, was at most
only about 3% lower than that in the open-loop case.

It must be noted that in both the open- and closed-

loop cases, the driving pressure used was the same,

Fig. 2. Velocity vectors at (a) end of ejection and (b) end of

filling.
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namely sinusoidal with an amplitude of 215MPa.
However, while in the open-loop case the pressure in the

VAD was of the order of 1 kPa, in the closed-loop case it
was much higher, of the order of 10MPa. This pressure,
although sufficiently smaller than the driving fluid
pressure to allow appreciable diaphragm deformation,

was high enough to generate large compression of
‘blood’, thus reducing its flow in the VAD.

Another consequence of using the slightly compres-

sible fluid model is that the elastic tubes could not be
calibrated to the total arterial and venous compliance
values found in the literature. To achieve the desired

motion of the elastic walls, the Young’s modulus of
elasticity, E, of the walls was set to be less than the bulk
modulus of the fluid, �. If E was set to be greater than �,
then the fluid would have compressed rather than for-

cing the walls to expand. In addition, the resistance of
the porous medium was set to be much larger than the
total peripheral resistance in the circulatory system in

order to get a decrease in velocity through the medium.
Attempts to increase further the value of � in order to
reduce the fluid compressibility, as well as to reduce the

magnitudes of the input pressure function and the
Young’s modulus of the diaphragm, were unsuccessful,
as the solution did not converge.

4. Conclusions

Velocity values were found to be much lower in the
closed-loop simulations than in previous open-loop
simulations. This decrease in velocity is due to the much

higher pressure magnitudes inside the loop, leading to

compression of the blood. This slightly compressible
fluid model limits the ability to obtain an accurate

solution with a closed-loop model. To improve the
quality of the solution with this model, a method must
be found to relax the slightly compressible fluid
requirement.
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Fig. 3. Comparison of open- and closed-loop results. (a) Velocity magnitudes at the blood chamber inlet; (b) x-velocities at a point

inside the blood chamber.
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