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Abstract

This paper is devoted to the discretization and numerical simulation of a new quantum drift-diffusion model that was
derived recently. We define an implicit numerical scheme that is equivalent to a convex minimization problem and that

preserves the physical properties of the continuous model: charge conservation, positivity of the density and dissipation
of an entropy. We illustrate these results with some numerical simulations.
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1. Introduction

Recently [1], a new direction for quantum hydro-
dynamic models was explored by extending Levermore’s

moment approach [2] to the context of quantum
mechanics. The strategy consists of defining a notion of
‘local’ quantum equilibrium as the minimizer of an

entropy functional under local moment constraints.
Such equilibria are defined thanks to a relationship
between the thermodynamic quantities (such as the

chemical potential or the temperature) and the extensive
quantities (the densities) in a non-local way. Quantum
hydrodynamic (QHD) models have been derived from

quantum kinetic equations by moment expansions
closed by these quantum equilibria[1]. Following the
same approach, a family of ad-hoc collision operators
has been introduced [3], which decrease the quantum

entropy and relax to the equilibria. This strategy has
been applied [4] in order to derive quantum diffusive
models: a quantum drift-diffusion (QDD) model and a

quantum energy-transport (QET) model. These works
have been reviewed [5]. Other diffusive models of the
type of the spherical harmonic expansion (SHE) model

are also constructed in the quantum framework[6].
All of these fluid models are written as conservation

laws coupled to constitutive equations. The quantum

character of these models lies in these constitutive
equations, which are non-local in space, making these
systems difficult to analyse. However, an interesting
property of these models is that – at least formally – a

fluid entropy functional is dissipated. This feature gives
an indication of the well-posedness of these systems;
besides, it is interesting to recall that the entropic
property is obtained as a by-product of the strategy of

entropy minimization.
We are interested here in the QDD model. This con-

sists of a mass balance equation for the density of

particles n(t, x)

@tnþ div j ¼ 0, ð1Þ

supplemented with a constitutive equation for the
charge flux j(t,x)

j ¼ nrðA� VÞ, ð2Þ

describing the combined effects of the potential V(t, x)

and of a quantity A (t, x) called the quantum chemical
potential. The originality of this model is that this che-
mical potential is linked to the density by a relationship

that is non-local in space. In a classical setting, we would
have a local relation such as n(t, x) = e�A(t,x) (which
induces diffusive effects), whereas in this quantum model
we have instead

n ¼
X
p

e��p ½A� �p½A�
�� ��2, ð3Þ

where (�p[A], �p[A])p denotes the whole sequence of

eigenvalues and eigenfunctions of the modified Hamil-
tonian H[A] = ��h2 � + A + Vext, i.e. satisfy

��h2��p þ ðAþ VextÞ�p ¼ �p�p ðp 2 N
�Þ: ð4Þ

To complete the model, self-consistent interactions
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are taken into account by the mean of the Poisson
equation, satisfied by the self-consistent potential V(t,

x):

���V ¼ n: ð5Þ

In this system, Vext denotes an applied external

potential and �h and � are two dimensionless parameters.
These equations are set on a bounded domain � � R

d (d
� 3), subject to the following boundary conditions on
@�:

V ¼ 0 and �p ¼ 0 ð8p 2 N
�Þ on @�, ð6Þ

rðA� VÞ � � ¼ 0 on @�, ð7Þ

where v(x) denotes the normal vector at x 2 @�. Among
other properties [4,7], one can show that the following

free energy is dissipated by this model, i.e. is a decreasing
function of time:

SðtÞ ¼ �
Z

nðAþ 1Þ dxþ �
2

Z
rVj j2 dx:

2. Entropic discretization of the model

In dimension 1, an implicit numerical scheme for this

system was introduced [7,8], consistent with the entropy
dissipation. The domain is � = (0, 1). In order to dis-
cretize the QDD system (Eqs (1)–(7)), we introduce a

time gridstep �t > 0, a space gridstep �x = 1/(N + 1)
(where N 2 N*), and we set tk = k�t for k 2 N and xi =
i�x for i = 0, . . ., N + 1.

Let us define the discrete equivalents of the operator
H[A] and of its eigenelements �p[A], �p[A]. To this aim,
we first introduce the matrix �Dir of discretization of the

operator d2

dx2
on (0, 1) with Dirichlet boundary conditions

by a centred finite difference method. Then, for any
vector (Ai)1�i�N, we define the matrix M[A] = ��h2�Dir

+ Diag (A + Vext), where Diag(A + Vext) denotes the

diagonal matrix of coefficients Ai þ 1
�x

R xiþ1=2
x
i�1=2

VextðxÞdx.
This matrix is the discretization of the operator H[A]
and, for 1 � p � N, we denote, respectively, by ‘p½A� and
Xp[A] the eigenvalues and eigenvectors of M[A]. The
eigenvectors Xp[A] are normalized, such that
�x
P

N
i¼1ðXp½A�iÞ

2 ¼ 1:
Let us now describe the numerical scheme. The

unknowns nki , A
k
i and Vk

i of the discrete model approx-
imate the corresponding functions at the point (tk, xi).

For k 2 N and i 2 1, . . . , N, the implicit finite difference
numerical scheme is written

nkþ1i � nki
�t

þ
nki Akþ1

iþ1 � Vkþ1
iþ1 � Akþ1

i þ Vkþ1
i

� �
�x2

�
nki�1 Akþ1

i � Vkþ1
i � Akþ1

i�1 þ Vkþ1
i�1

� �
�x2

¼ 0, ð8Þ

nki ¼
X
p

exp ð�‘p½Ak�Þ ðXp½Ak�iÞ
2, ð9Þ

��
Vk

iþ1 � 2Vk
i þ Vk

i�1
�x2

¼ nki , ð10Þ

and we set noi = no(xi). In order to take into account the
boundary conditions in Eqs (6) and (7), we define the

unknowns for i = 0 and i = N + 1 by

nk0 ¼ nkNþ1 ¼ Vk
0 ¼ Vk

Nþ1 ¼ 0, ð11Þ

Ak
0 � Vk

0 ¼ Ak
1 � Vk

1, Ak
Nþ1 � Vk

Nþ1 ¼ Ak
N � Vk

N:

ð12Þ

From Eq. (9), it is clear that this scheme preserves the

positivity of the density. Moreover, the conservative
form of Eq. (8) and the no-flux boundary conditions
show that the total mass is independent of time. One can

show that each iteration of this scheme (the calculation
of (Ak+1, Vk+1) for a given nk) is equivalent to the
minimization of the following convex functional:

JðA,VÞ ¼ �t

2�x

XN
i¼1

nki ðAiþ1 � Viþ1 � Ai þ ViÞ2þ

�

2�x

XN
i¼0
ðViþ1 � ViÞ2

þ
XN
p¼1

exp ð�‘p½A�Þ þ�x
XN
i¼1

nki ðAi � ViÞ:

Notice that the variational structure of this problem is
similar to that of the stationary Schrödinger–Poisson

system studied in the works of Nier [9,10].

3. Numerical results

Since this scheme is equivalent to a convex mini-

mization problem, its implementation can be achieved
efficiently by Newton iterations. Let us present some
numerical results that were obtained thanks to this

scheme. The external potential Vext is a discontinuous
function playing the role of a double barrier structure
potential and the initial density is concentrated on the

left of the double barrier. In Figs 1–3, we have repre-
sented the density n(x) and the total potential V + Vext

as functions of the position x, at the initial step and then
after 60 and 600 iterations. One observes numerically the

convergence to a steady state where a part of the total
charge is trapped inside the double barrier and the rest is
distributed equally outside the barriers. The study of this

long-term behaviour is given by Gallego and Méhats [7].
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In Fig. 4, we have represented the free energy as a

function of time and shown that it is a decreasing
function converging to a constant.
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Fig. 4. Evolution of free energy.

Fig. 1. Initial density n(x) (solid line) and total potential (V +

Vext) (x) (dashed line).

Fig. 2. Density and potential after 60 iterations.

Fig. 3. Density and potential after 600 iterations.
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