
Simulations of alternative phases of space-filling graphene crystals

under mechanical loads

Peter W. Chung*

US Army Research Laboratory, AMSRL-CI-HC, Aberdeen Proving Ground MD 21005, USA

Abstract

Quantum-level density functional simulations of planar graphene subjected to mechanical strains are found to

develop monoclinic or nearly-orthorhombic crystal structures through second-order phase transitions. They are
achieved through a bond rotation similar in part to the Stone–Wales transformation. The key result is the observation
of the rotation in even the smallest primitive cell, which connects to the transformation through the space-filling crystal

concept. Contrary to earlier observations of phase change in graphene, the deformations needed to obtain the con-
figurations exhibit both kinetic and thermodynamic features.
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1. Introduction

Since their discovery [1,2], intense interest has focused

on the engineering of materials and devices from various
forms of elemental carbon. The readily encountered
single-crystal form of single-wall carbon nanotubes
continues to be explored for its many possible uses [3,4]

and subsequent engineering applications [5,6]. In many
of the latter developments, it is important to understand
the mechanical behavior of elemental carbon forms and,

in general, its mechanics, outside of the standard linear
elastic regime. Significant progresses have been made in
recent years in this regard by examining the mechanical

limits of nanotubes and graphene. Of particular interest
has been the identification and simulation of the so-
called Stone–Wales (SW) transformation [7], a

mechanism that has a critical role in the mechanical
deformation of nanotubes and fullerenes under tension
near the yield point [8–19].

The SW mechanism is basically a rotation of a bond

connecting two atoms that changes the local coordina-
tion, equivalent to a local phase transformation of the
material. The rotation is accompanied by a local

relaxation of the lattice in the neighborhood of the
bond, leaving a new configuration that is energetically
more favorable and that relieves the amount of strain

energy that the system must withstand [10]. Its particu-
larly interesting feature is that it is a mechanically
induced effect with multiaxial features, unlike the

hydrostatic-pressure-or temperature-induced behavior
historically known for carbon forms [20,21]. The
importance of SW to understanding plasticity [11],
nanotube yield [10–12, 14, 22, 23], geometry dependence

[9], and dependence on realistic experimental conditions
[24,25] have been well documented.
In a typical kinetic simulation of strains in a large

lattice, the SW defect forms spontaneously at random
locations, with some preferable orientation according to
the zig-zag (ZZ) or armchair (AC) configurations of the

basal plane [10–12]. Generally, the theoretical investi-
gations thus far have considered relatively large
supercells of atoms in graphene and nanotubes or for-

mation studies of molecular fullerenes. This presumes
that the defect will form at some location. In contrast to
this, we assume that the motion occurs everywhere. The
point of departure, therefore, is in the selection of a

periodic primitive cell to perform our calculations using
mechanical uniaxial loading conditions. This effectively
isolates the bond-rotation effect from other parametric

dependencies, so that we can examine the mechanics
separately and decouple the longitudinal and transverse
directions to study the anisotropy of the material.

In this paper, we offer an alternative mechanical
interpretation of previously observed results, i.e. that the
defect formation is related, in part, to a zero-
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temperature-limiting behavior of a deformation-induced
solid–solid phase transformation. We compute the entire

strain energy landscape for a periodic primitive cell
undergoing large deformations and examine differences
in the results as they depend on the orientation of the

basal plane. To contrast this with earlier works, the key
result here is that the rotation event not only occurs but
is observable even in the smallest primitive cell, inter-

acting with its images, which subsequently suggests a
second-order phase change in the sense of a space-filling
crystal [26]. Though previously shown to be a kinetic
process, we further show through constrained uniaxial

deformations that bond rotations possess both kinetic
and thermodynamic features depending on the axis of
loading.

2. Calculation procedure

We use the concepts of finite strain continuum

mechanics for the definitions of deformations and
strains. Points in the reference configuration are defined
by X and their corresponding points in the deformed
configuration by x. The deformation gradient tensor is

then defined as the gradient of x with respect to the
reference configuration X, such that F = rox = @x/@X.
Consideration is presently limited to uniaxial stretching

along either the principal ZZ or AC axes of the graphene
sheet, with the former aligned along the basal plane and
the latter oriented transversely. This simplifies the

deformation tensor to a diagonal 3 � 3 matrix whose
components are (1 + �, 1 + �, 1), where, for all
parametric variations of �, � is currently held fixed at
zero and, likewise, for all � variations, � is set to zero. In

a one-dimensional sense, � and � are the so-called
engineering strains that measure the uniaxial change in
length relative to the reference length. Discussions hen-

ceforth interchangeably use the term ‘deformation’ to
refer to the relevant component of F being used and the
term ‘strain’ to refer to the respective engineering strain

component, i.e. in the context of this paper, deformation
is 1 + (strain). Deformations are then applied in the

conventional way by multiplying Ai for i = 1, 2, 3 by F

to give the deformed lattice vectors ai = �j=1,2,3 (F)ij Aj.
The calculations proceed by taking the periodic cell of

single-crystal graphene containing two atoms in the
primitive basis, as shown in Fig. 1. One atom is held
fixed while the position of the other atom is varied in the

plane. At each deformation state where we hold ai fixed,
2200 grid points are evaluated using density functional
theory (DFT) [27] from the planewave ABINIT code

[28], in which the exchange and correlation term is
treated through the generalized gradient approximation
(GGA) according to the Perdew–Burke–Ernzerhof
functional [29] with the Hartwigsen–Goedecker–Hutter

pseudopotential for carbon. A planewave energy cutoff
of 1360 eV is used throughout. Each grid point repre-
sents a single self-consistent fluid (SCF) calculation and

the points combine to generate a full energy landscape.

3. Results and discussion

Calculations of strain energies are shown in Fig. 2 in

the unloaded reference state and at 29% strain in both
the ZZ and the AC directions. To be able to compare the
results as they change with deformation, we normalize
the cell dimensions so that (0,0) signifies the origin of the

local coordinate frame in the lower left corner of the cell,
(1,0) signifies the lower right corner, etc. In the unde-
formed case with the fixed position of the first atom at

the reduced coordinate of (1/3,1/3), the equilibrium
position of the second atom is clearly at (2/3,2/3). The

Fig. 2. Strain energy landscapes. Primitive cell dimensions are normalized.

Fig. 1. Graphene primitive cell.
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additional minima at (1,0), (1,1), and (0,1) represent the
crystal symmetries.

At 29% strain, there is a clear change from hexagonal
structure – two additional local minima appear in the
cell. Figure 2b shows these to be at (1/3,5/6) and (5/6,

5/6) at an energy of 1.32 eV per primitive cell atom. The
reverse barrier is approximately 50meV per atom at this
strain, suggesting a total activation of 1.37 eV per atom.

The barrier height is very high due to the assumption of
a space-filling crystal that does not allow for relaxation
in the vicinity of the defect. The SW formation depends
critically on the local strain fields in the region [14], and

the disabling of this relaxation makes a direct quanti-
tative comparison difficult. However, the values can still
be reasonably compared by considering that the energy

of all atoms participating in the rotation is 2.74 eV. It is
noteworthy the minima actually appear for such a small
system, expedited by the applied mechanical loads, and

the character is kinetic, as evident by a nonzero reverse
barrier.

This activation corresponds to a transformation stress

of 24.9GPa, assuming a graphene layer thickness of 3.35
Å. The transformation occurs at approximately 29%
engineering strain. These values are in reasonable
agreement with earlier calculations that show nanotube

yield strains of 5–30% [22] and SW defect activation
energies of 3–8 eV via theory [8,9,30] and 4–10 eV via
experiments [13,31–33]. Experimental tensile strengths

are in the range 10–150GPa [23,34].
The behavior for uniaxial tension along the AC axis is

considerably different. The second minimum that

appears in Fig. 2c is from the minimum originally at
(1,0) that travels upward with increasing deformation.
The result is a reduction in the symmetry of the crystal
without the creation of new minima. The midpoint

along the line connecting the minima corresponds to the
exact orthorhombic structure. These observations
appear to be consistent with findings that the defect

appearance depends on chirality [10–12]. However, it is
noteworthy that it is a gradual closening of the minima,
rather than a spontaneous activation, suggesting a

thermodynamic behavior.
The kinetic and thermodynamic properties of the

deformations are made more evident in Fig. 3 in the

energy levels along the lines ABC and A0B0C0 from Fig.
2a. At the 29% ZZ strain, a new minimum appears and
takes over at B with increasing strain. Up to 29% and
high AC strains, the minima that originally were at A0

and C0 grow closer to B0, but a new minimum does not
take over.

These results appear to suggest two alternative crystal

configurations under our presumptions of uniaxial
mechanical loading at zero temperature and the space-
filling crystal concept. In the ZZ direction the crystal

takes a monoclinic form, and in the AC direction the

form is nearly orthorhombic. The latter is made condi-
tional because of the thermodynamic feature of the bond
rotation described earlier. The strain energies of the

hypothetically deforming crystals in Fig. 4 demonstrate
that the lowest-energy paths follow these alternative
structures. In the case of AC straining, however, the
crystal finds a lower energy configuration a small dis-

tance from the exact orthorhombic structure. Also
noteworthy is the smaller curvature of the two alter-
native crystal forms, which signifies a softer material

behavior and helps to explain the exclusivity of the
defect formation in a small neighborhood around the
rotating bond.

4. Conclusions

The current results have an implied assumption of
zero temperatures through static density functional

theory (DFT) calculations. Indeed, experimental evi-
dence suggests that the bond rotation is a localized event
where temperature effects are critical. One also expects
that in the configuration space of the material where

both temperature and deformations are accounted for,
the regime where these phase transformations are valid
is asymptotically smaller than for general SW transfor-

mations. However, our approach for decoupling the

Fig. 4. Alternative crystal strain energies.

Fig. 3. Energy with respect to deformation along lines ABC

and A0B0C0 of Fig. 2a.
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temperature from the mechanics and using the simpler
space crystal assumption reveal new facets to the SW

phenomenon. The observations that the defect forma-
tion may be interpreted as a partial concerted phase
transformation and that the behavior exhibits thermo-

dynamic anisotropy do not appear to have been
considered before and shed new understanding on this
important material effect.
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