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Abstract

An efficient algorithm for particle–particle and particle–wall collision detection in the two-dimensional case is briefly
presented. The algorithm ensures an efficient computation of colliding particle flows. The physical domain is hier-

archically divided and structured as a quad-tree. The algorithm is intended for particle-laden flows, which require small
time steps, but within each time step, the algorithm is event-driven. The algorithm is used here to study the flow
behaviour of a laboratory-scale fluidised bed. The two-dimensional motion of each individual spherical particle is

directed, calculated from the forces acting on it, accounting for the interaction between the particle and the gas phase.
The soft sphere model is used in the present work. The contact forces are continuous and finite and are a function of the
deformations of the particles. A comparison of experimental observations and computational results of a two-

dimensional laboratory-scale bubbling fluidised bed is presented and discussed.
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1. Introduction

During the past decade, the discrete element method

(DEM), in which every single particle is tracked, has
been used by many investigators and gives promising
results [1–3]. There is still a long way to go before full-
sized equipment containing 1012–1015 particles can be

simulated using the DEM, but meanwhile the DEM can
give useful statistics for methods that handle the parti-
cles as a continuum and to improve the understanding

on a mesoscopic level [4].
When the particle concentration is so high that the

dynamics are dominated by several particles being in

contact simultaneously, such as in fluidised beds or
gravity settling, the soft sphere model should be used. A
time-consuming part of a DEM using a soft sphere
model for particle particle interaction is the calculation

of the forces. A O (N2) search, where N is the number of
particles, is reduced to O (N) by using a cell structure [5].

An algorithm for simulating soft sphere particle

dynamics in two dimensions, developed along the lines

of Melheim and Gjetsvik [6], is employed. The algorithm
uses a cell system for collision detection. In the present
work, the algorithm of Melheim and Gjetsvik [6] is

extended to handle finite-time collision models such as
the soft sphere model. The numerical predictions are
compared qualitatively with experimental observations
of the bubble formation in a two-dimensional labora-

tory fluidised bed. A discussion about the obtained
results and their discrepancies is presented.

2. Background

2.1. Particle physics

The trajectory of a discrete particle is calculated by
integrating Newton’s second law for the particle, which

is written in a Lagrangian reference frame. The law
equates the particle inertia with the forces acting on the
particle, and can be written as:

dvd
dt
¼ FC þ FD þ FG þ . . . ð1Þ

The particle velocity is denoted by vd, and forces
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acting on the particles may be contact forces FC, drag
forces FD or gravity FG. The forces Fi are given per unit

mass. Similarly, the rotation rate of the particle may be
determined from:

�d

dt
¼ TC þ Tf

Id
ð2Þ

where �d denotes the angular velocity of the particle
around its mass centre, TC denotes the torque due to
contact forces, and Tf represents other field contribu-

tions. Additional forces may be incorporated when
forces other than those due to contract, drag and gravity
are of importance. In the present work, the soft sphere

model of Cundall and Strack [7] is used. The contact
forces are continuous and finite. They are a function of
the deformations of the particles, and are modelled with

a simple mechanical analogy involving a spring, a dash
pot and a slider.

2.2. Cell system for collision detection

The most time-consuming part of a soft sphere or
molecular dynamics code is the calculation of the forces.

In principle, for a given particle, we have to check for
possible contact with every other particle in the system.
Scanning particles for possible contacts is very time-
consuming when the number of particles is large, since it

scales as N2, where N is the number of particles. How-
ever, the short-range nature of the interaction makes it
possible to reduce the contact checking to O (N), for

example by employing a neighbour list. The spatial
domain is partitioned into rectangular cells, and the idea
is that if we keep track of which particles are in each cell,

and if the cells are larger than the largest particle, then
for each particle we need check only for contacts with
particles in the neighbouring cells. The cell structure

proposed by Melheim and Gjelsvik [6] is used in this
paper.

2.2.1. Algorithm for the particle model

The outlines of the framework for the computation of
the trajectories of the discrete particles are presented
here. The algorithm uses the computational strategy of

Hoomans et al. [2], where we have included the priority
queue of particle events of Lubachevsky [8], the data
structures of Sigurgeirson et al. [9], and the cell structure
presented by Melheim and Gjelsvik [8].

The algorithm consists of three primary data
structures:
1. The particle information: arrays with information

about the particles, their positions, velocities, size,
etc.

2. The event queue, which is a collection of events, each

with an event time and information to carry out the

event. In this queue, a maximum of one event is
stored per particle. Possible events are:

. a collision with another particle;

. a wall collision;

. a transfer (the particle moves to a neighbour cell);

. a check (the particle is to be checked for new
events);

. the particle is to be removed, for instance when

the particle hit an outlet.
3. The cell structure, which contains information to

make a neighbour-particle list in an efficient way.
The primary data structure is maintained in the

operations of the algorithm.
Fig. 1 shows the primary flow chart. Initially, at each

time step counters are reset and if there are new particles

to add, these are initialised and added. If the cell
structure is chosen to be adaptive, cells are split and
merged. Then the forces on the particles are recalculated

based on an updated fluid velocity field. Based on the
positions and velocities at the end of the previous time
step, a new event queue is built.

The main loop is the engine of the algorithm. The
events are handled, new events are detected, and cell

Fig. 1. Primary flow chart.
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particle lists and the event queue are updated. The loop
runs until no more events will happen during the time

step [6]. During the time step, only particles that are in
contact either with each other or with the wall are
moved. At the end of the time step, the position of all

particles is recalculated. Finally, particle–fluid cell
mapping is updated and the volume fraction of particles
in each fluid cell is calculated.

3. Experimental and numerical results

3.1. Experimental results

A two-dimensional fluidised bed with a central jet is
constructed in order to study the bed expansion and
bubble formation in gas–solid flow [4]. The purpose of

this study is to verify the predictive capability of the
DEM employed here. A digital video camera is applied
to measure bubble formation and velocity.

Between 0 and 280ms, the bubble size increases but is
located at the approximate same vertical position (see
Fig. 2). At time 280ms, the bubble diameter is db �
3.9 cm, and the bubble starts to rise. The bubble moves

upwards and, maintaining a circular shape, its diameter
increases to 7.5 cm during the next 320ms. At this point,
the bubble continues to move upwards, but its shape

changes and bubble break-up is observed (Fig. 2). At
time 320ms, a new bubble is formed at the bottom of the
bed and starts to rise. This new bubble differs sig-

nificantly in shape from the first one and seems to
remain attached to the bottom of the bed for the next
160ms.

3.2. Numerical results

Independence of the numerical results from the spatial
discretisation is ensured for the simulations performed
with the DEM. In the present work, a static cell struc-

ture with optimal size is preferred to an adaptive cell
structure for the reasons pointed out by Melheim and
Gjelsvik [6].

The restitution coefficient used in calculation per-
formed in this work is en = 0.95. The particle density is
�= 2500 kg/m3. Furthermore, a size distribution similar
to that measured in the experiment is employed in our

calculations.
Fig. 3 presents the prediction obtained from the DEM

approach. Between 0 and 360ms, the bubble size

increases and rises in the vertical direction. The bubble
remains attached to the bottom of the fluidised bed,
where the air is injected. It elongates, assuming more

and more an eliptical shape. At time 420ms, the bubble
leaves the horizontal plane and starts to move upwards.
Its area increases during the next 320ms, but it main-

tains the same shape. At this point, the bubble continues
to move upwards, but its shape changes and bubble
break-up is observed. A new bubble is formed and starts
to rise at time 680ms. The shape of this second bubble

differs from that of the first one and is rather elongated.
It remains attached to the bed for the next 160ms.

3.3. Discussion and final remarks

Figs 2 and 3 show a qualitative comparison between

the experimental observations of the bubbling fluidised
bed and the numerical results obtained with the DEM.
In Fig. 4, the observed and predicted position of the first

bubble is plotted as a function of time. A good

Fig. 3. Numerical prediction of a two-dimensional fluidised bed

formulated with a Eulerian–Lagrangian approach. �t = 80ms

is the time interval between each picture.

Fig. 2. Sequence of pictures of a two-dimensional fluidised bed.

The time interval between each shot is �t = 80ms. In the first

picture taken at time t0 = 120ms, an air bubble is about to

appear.
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agreement is observed. The shape of the bubble pre-

dicted numerically differs from the experimental
observations, especially when the bubble is generated.
The formation time and the shape of the second bubble

also seem to be predicted well from the numerical
calculation.
The overall behaviour of the fluidised bed predicted

by the DEM simulation seems to be described in a
satisfactory way.
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Fig. 4. The position of the first bubble in the bed is plotted as a

function of time. Experimental observations are compared with

numerical results.

M. Chiesa, J.A. Melheim /Third MIT Conference on Computational Fluid and Solid Mechanics 963


