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Abstract

Continued fraction absorbing boundary conditions (CFABC) are artificial boundary conditions that can be used for

modeling wave absorption into an unbounded exterior. In this paper, CFABC are extended to modeling wave pro-
pagation in dispersive media. While the original CFABC are effective only for propagating waves, the proposed
extension is effective also for evanescent waves that could be predominant in dispersive media. The main idea is to

augment the original CFABC with a special padding region that would act as an effective boundary condition for
evanescent waves. Presented here is the basic idea behind the extension, summary of various issues that were resolved
during the development, and a numerical example illustrating the effectiveness of the proposed approach.
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1. Introduction

Several problems of wave propagation involve
domains of infinite extent where it is required to truncate
the domain and use appropriate absorbing boundary
conditions (ABCs) that simulate the absorption of waves

into the exterior. The focus of the paper is to develop
effective ABCs for dispersive media. Wave propagation
in dispersive media is different (from non-dispersive

media) in that, even in the absence of heterogeneities
and physical boundaries, there exist evanescent waves in
addition to propagating waves. In this paper, we extend

continued fraction absorbing boundary conditions
(CFABCs, [1]), effective boundary conditions for pro-
pagating waves, to evanescent waves, and thus to

dispersive media.
CFABCs are based on a link between finite element

discretization and rational approximations, and unify
the two disparate classes of boundary conditions,

namely the material absorbers (PML, [2]) and rational
approximation based absorbers (see, e.g. [3]). CFABCs
have the flexibility of material absorbers, while retaining

the effectiveness of rational absorbers. Due to their
flexibility, CFABCs can be extended to dispersive media,
but such an extension is not straightforward. In addition

to the modification required to handle evanescent waves,
special time-stepping schemes are designed to solve a

peculiar fourth-order differential equation. With these
modifications, the resulting CFABCs become highly
effective for dispersive media. In what follows, we pre-
sent the basic idea of CFABC, extension to dispersive

media, issues involved in numerical implementation and
an example to illustrate the performance.

2. Continued fraction absorbing boundary conditions

(CFABC)

CFABCs are derived using a four-step procedure. The

first step involves the discretization of the exterior using
finite elements, which results in discretization error. In
the second step, which is the key to the effectiveness of
CFABC, a special integration scheme is utilized to

eliminate the error in the impedance of the exterior. In
the third step, to make the problem computationally
tractable, the number of finite elements are truncated in

the direction normal to the artificial boundary. The
approximation resulting from the truncation can be
quantified in terms of the reflection coefficient at the

artificial boundary [1]:
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R ¼
Yn
j¼1

k � 2i=Lj

kþ 2i=Lj

� �2

ð1Þ

where n is the number of absorbing layers, k is the
wavenumber in the direction perpendicular to the
boundary and Lj are the lengths of finite elements (in the

direction normal to the boundary). It is clear from Eq.
(1) that, in order to reduce the reflection coefficient for
propagating waves (with real wavenumber), the element

lengths must be imaginary, which constitutes the final
step of CFABC. This idea is similar to the complex
coordinate stretching of PML [4]. The reader is referred
to [1] for further details.

3. CFABC for dispersive wave

A model problem for dispersive wave propagation can

be represented by the Klein-Gordon equation:

�c2 uxx þ uzzð Þ þ uzz þ f 2u ¼ 0 ð2Þ

where c and f 2 are the wave velocity and dispersion
parameter respectively. Since the above equation is
amenable to finite element discretization similar to that

of the non-dispersive wave equation, the ideas presented
in the previous section are immediately applicable and
the CFABC can be readily extended. However, it is
important to note that, in dispersive media, there exist

evanescent waves (with imaginary or complex wave-
number), in addition to propagating waves (with real
wavenumber). Evanescent waves are often characterized

using the decay parameter, � = ik, and the propagating
waves are characterized using phase velocities, c p = !/k.
The reflection coefficient in Eq. (1) can be rewritten in

terms of c p and � as:

R ¼
Y cp � !Lj=2i

cp � !Lj=2i

� �2Y �� 2=Lj

�þ 2=Lj

� �2

ð3Þ

In order to reduce R for propagating waves, we choose
imaginary element lengths Lj = 2icj / !, where cj are the
parameters of the boundary condition and are called the
reference phase velocities. To reduce R for evanescent
waves, the lengths are chosen as real, Lj = 2 / �j , where
�j are called the reference decay coefficients. Such usage
of real lengths is essentially a special discretization of a
region around the computational boundary. This region

is referred to as the padding region and the resulting
boundary condition is called the padded CFABC. The
reflection coefficient can be written in terms of cj and �j
as:

R ¼
Yn
j¼1

cp � cj
c p þ cj

� �2Ym
j¼1

�� �j
�þ �j

� �2

ð4Þ

where n is the number of absorbing layers, and m is the
number of padding layers.

The parameters cj and �j govern the performance of
the boundary condition and are problem dependent.
Based on the analysis presented in [5], the following

choices of parameters tend to give good results:

c j ¼ c

cos �j=2nð Þ ð5Þ

ln � j
� �

¼ j=mþ 1ð Þ ln �max=�minð Þ þ ln �minð Þ ð6Þ

The minimum value of the decay coefficient (�min) is
selected from the dispersion relation and the maximum
value of the decay coefficient (�max) is selected based on

position of the load [5].

4. Finite element discretization and time stepping

Since the CFABC is based on finite element dis-

cretization, no special effort is needed to obtain the finite
element mesh (a typical discretization of CFABC is
shown in Fig. 1). However, there are two important
differences. Special integration is needed for both pad-

ding and absorbing regions, and frequency-dependent
imaginary element length is used for the absorbing ele-
ments. Due to the frequency dependence, the spatially

discrete equations become a fourth-order evolution
equation in the time domain:

MAþ CVþ KUþ RWþ SX ¼ F ð7Þ

In the above, U is the displacement vector, V = @U/@t,
A = @2U/@t2, W =

R
Udt and X =

R
Wdt. The above

equation is significantly more complicated than the
regular second-order equation encountered in standard

Fig. 1. Finite element discretization of CFABC.
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Fig. 2. CFABC solution with three absorbing layers.

Fig. 3. Full space problem (30m � 30m) with padded CFABC.
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dynamics problems. Eq. (10) is converted to second-
order system by using the trapezoidal rule to approx-
imate X and W successively:

Xnþ1 ¼ Xn þ�t

2
Wn þWnþ1� �

ð8Þ

Wnþ1 ¼Wn þ�t

2
Un þUnþ1� �

ð9Þ

The resulting second-order equation is then solved using
the standard Newmark schemes.

5. Numerical example

We simulate the propagation of explosion in the
unbounded domain modeled using 200 � 200 mesh of

finite elements representing a 30m � 30m interior, with
the proposed boundary conditions applied on the
boundary. An explosive circular pulse f(r,t) similar to [6]

is placed at (3.75m, 3.75m).

f r; tð Þ ¼ �2�2f 20 t� t0ð Þe��2f 20 t�t0ð Þ2 1� r2

a2

� �3

; if t � 2t0; r � a

0; otherwise

8><
>:

ð10Þ

In the above r is the distance from the center of the

source, h is the element length and a = 5h is the radius
of the disk, t0 = 1/ f0, f0 = c/(hNL) is the central fre-
quency, and NL is the number of points per wavelength.
We used NL = 20 and c = 2000m/s. Central difference

time-stepping is used and the time step size is taken as
the critical value (�t ¼ h

ffiffiffi
2
p

c


). The snapshots of the
solution using CFABC with three layers is presented in

Fig. 2. Clearly, there is distortion in the wave front,
which could be due to the lack of proper treatment of
evanescent waves. In order to properly treat evanescent

waves, we used three padding layers of thickness 1.27m,
1.87m, and 2.74m respectively (see Fig. 3). The results
are shown in Fig. 4, clearly illustrating the effectiveness

of padded CFABC.

Fig. 4. Padded CFABC solution with three absorbing and three padding layers.
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6. Conclusions

Padded CFABC are new ABCs that constitute special
integration coupled with the (real-length) padding and
(imaginary-length) absorbers that accurately model

evanescent and propagating waves, making themselves
highly effective for modeling dispersive exteriors. The
implementation of padded CFABC in any existing finite

element software is straightforward, with some care
required for time-stepping procedure. For further
details, the reader is referred to [5].
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