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Abstract

In the present paper we present a methodology that is applicable to large-eddy simulations of fluid–structure
interaction problems. The fluid flow equations are solved on a fixed grid that does not conform to the structure, and

boundary conditions are imposed using a local reconstruction procedure. The structure that undergoes both linear-
elastic and large-angle/large-displacement rigid body motions is strongly coupled to the fluid using a predictor–cor-
rector approach. Preliminary results for both laminar and turbulent flow problems are included.
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1. Introduction

Numerical simulations of turbulent and transitional

flows with dynamically moving boundaries are amongst
the most challenging problems in computational
mechanics. Although a variety of fluid–structure inter-

action algorithms have been developed over the years,
relatively few applications in turbulent and transitional
flows have been reported. In most cases, this is due to

prohibitively high computational cost, or dissipative
discretizations that limit the applicability of such
methods to classical turbulence modeling strategies.

Further advancements in this field can be achieved by
coupling state-of-the-art tools to model turbulence and
transition (i.e. large-eddy simulations (LES) or hybrid
formulations) with cost/efficient numerical methods

applicable to problems with large boundary motions
and deformations. Example applications of such a tool
include a variety of low and moderate Reynolds number

turbulent flow problems from engineering, biology and
medicine, where fluid–structure interactions are central
to the dynamics of the flow.

In the present paper we present a non-boundary
conforming method that is applicable to LES of fluid–
structure interaction problems. In such cases the grid

does not need to conform to a complex moving body,
eliminating the tedious grid regeneration or deformation
procedure required in classical boundary-conforming
approaches, and at the same time allowing the adoption

of highly efficient, energy conserving, Cartesian solvers.
The boundary motion which is strongly coupled to the
fluid flow can be due to linear-elastic and large-angle/

large-displacement rigid body motions. The overall
methodology including the fluid solver, the structural
model and their coupling will be discussed briefly in the

next section. Then some preliminary results on simple
two-dimensional configurations and fully three-dimen-
sional turbulent flows will be given to demonstrate the

accuracy and range of applicability of the method,
respectively.

2. Methodology

In LES, the resolved, large-scale, velocity, and pres-
sure fields can be obtained by directly solving the filtered

Navier-Stokes equations, where scales smaller than the
grid size will be modeled. In the present implementation
a top-hat filter in physical space is implicitly applied by

the finite-difference operators. The resulting subgrid
scale (SGS) stresses are modeled using the Lagrangian,
dynamic, eddy-viscosity model [1]. The equations gov-

erning the evolution of the large scales are solved on a
fixed Cartesian grid that covers the entire computational
domain, ignoring the presence of complex immersed
bodies. A fractional-step method is used for this pur-

pose, where all terms are advanced in time using an
explicit third-order Runge-Kutta scheme. All spatial
derivatives are approximated with second-order central

differences on a staggered grid.
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Boundary conditions on a complex immersed struc-
ture, which in general is not aligned with the grid, are

enforced using a ‘direct-forcing’ scheme that practically
reconstructs the solution in the vicinity of the body
according to the target boundary values. An example of

an immersed boundary identified by a series of material-
fixed interfacial markers whose location is defined in the
reference configuration of the solid, is shown in Fig. 1.

This information is used to identify the Eulerian grid
nodes that are involved in the solution reconstruction,
which is performed ‘around’ the points in the fluid phase
closest to the solid boundary (see Fig. 1a). An advantage

of this choice is that it simplifies the treatment for the
points that emerge from the solid as the boundary moves
through the fixed grid. Details on the overall metho-

dology can be found in [2].
In the reconstruction procedure described above it

was assumed that the local boundary velocity is known.

This velocity, however, has to be computed from the
solid structure that can undergo both linear-elastic and
large-angle/large-displacement rigid body motions. In

order to describe the dynamics of the body, the state of
the structure and the loads’ time-change are tracked.
This tracking process necessarily involves a kinematic
description with respect to a reference state. In the

present study the corotational (CR) formulation is used
[3]. A linear finite-element model of the structure is used
to predict the elastic deformations. The models are

coupled in such a way that the structural and hydro-
dynamic grids can be chosen arbitrarily. The
deformation of the structure is expressed as an expan-

sion in terms of the linear free-vibration modes obtained
from the finite-element model. The time-dependent
coefficients in the expansion of the deflection are the
generalized coordinates of the complete dynamic system.

A strong coupling scheme is adopted, where the fluid
and the structure are treated as elements of a single

dynamical system, and all of the governing equations are
integrated simultaneously, and interactively in the time-

domain. There is a fundamental complication related to
the time-domain approach: to predict the hydrodynamic
loads one must know the motion of the structure, and to

predict the motion of the structure one must know the
hydrodynamic loads. To overcome this complication, an
iterative scheme that accounts for the interaction

between the hydrodynamic loads and the motion of the
structure was developed. The procedure is based on
Hamming’s fourth-order predictor–corrector method.
Details can be found in [4,5].

3. Results

3.1. Vortex-induced vibrations for a circular cylinder

As a demonstration of the accuracy and robustness of
the proposed method, vortex-induced vibrations (VIV)

for a circular cylinder are simulated. The equation of
motion for VIV of a circular cylinder oscillating in the x-
and y-directions modeled by a spring-damper-mass

system is:

½m� €xðtÞ þ ½c� _xðtÞ þ ½k�xðtÞ ¼ Fðx; _x; €x; tÞ ð1Þ

where [m] is the mass matrix, [c] is the damping matrix,

and [k] is the stiffness matrix for the structure. F is the
fluid force and x(t) = X0(t)i + Y0(t)j, with X0(t) and
Y0(t) the displacements of the center of mass of the
cylinder in the x- and y-directions, respectively.

Two different cases were considered with one and two
degrees of freedom respectively. The Reynolds number,
Re = U1D/� = 200 (U1 the freestream velocity, D the

diameter of the cylinder, and � the kinematic viscosity of
the fluid) for both cases. The computational domain is a
rectangular box, and the cylinder center was initially

Fig. 1. Schematic of a solid body immersed in a Cartesian grid. (a) Reconstruction of the velocity field near the interface; (b)

reconstruction of the traction forces on the body. Dashed line denotes the normal to the boundary.

J. Yang et al. / Third MIT Conference on Computational Fluid and Solid Mechanics 941



located at (0, 0). A Cartesian grid of 640 � 480 grid

points in the x- and y-directions is used with approxi-
mately uniform cells of size 0.01D2 in the vicinity of the
cylinder.

For the flow in the first case (the cylinder is allowed to
vibrate in the transverse direction), the Skop-Griffin
parameter is SG = 2�3S2(m*�) = 7.460 � 10�3 (S the

Strouhal number of the fixed cylinder, m* the mass
ratio, and � the damping ratio). Our results are in very
good agreement with results in the literature. Using, for

example, the empirical equation A�MAX ¼ B=ðCþ S2
GÞ

0:5,
(see [6] for the values of B and C) one can obtain
A�MAX = 1.111 for the above parametric space, while our
simulation predicts A�MAX = 1.118, which is in good

agreement.
More detailed results are shown for the problem with

two degrees of freedom (the cylinder can respond to

both the transverse and streamwise forces). Figure 2(a)
shows the vortex pattern: the vortices shed from the
cylinder develop into two parallel rows of vortices with

opposite sign. We observe a similar vortex shedding

pattern for the one-degree-of-freedom case above, but

this is very different from the Karman vortex street in
the wake of a fixed circular cylinder, which presents
vortices with alternate signs in one row behind the

cylinder. In Fig. 2b the time histories of drag and lift
coefficients are shown. Since the simulation is started
from the steady solution of the fixed cylinder case, the

flow field develops into steady state with almost constant
amplitudes of CD and CL rapidly after a short transition
period. Figure 2c shows the corresponding X–Y phase

plot, where a symmetric trajectory can be identified at
steady state. A symmetric trajectory is obtained at the
steady state. Here the peak amplitude is A�MAX = 1.294,
which is larger than that of the one-degree-of-freedom

case.

3.2. Turbulent flow over a traveling wavy wall

In this section LES of turbulent flow over a flexible
wavy wall undergoing transverse motion in a form of a

streamwise traveling wave is presented. The immersed

Fig. 2. Vortex-induced vibrations of an elastic circular cylinder: (a) vortex pattern; (b) force coefficients and displacement versus time;

(c) X–Y phase plot.
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boundary in this case no longer belongs to a moving

rigid body, but it has a non-uniform prescribed velocity
varying with time. Nevertheless, given the availability of
accurate DNS data in the literature [7], we can use it to

test the accuracy and efficiency of the proposed algo-
rithm in turbulent flows. The parametric space and
computational box in these LES are the same as in the

reference DNS by Shen et al. [7], where the location of
the wall boundary as a function of time is given by
yw(t) = a sin k(x � ct) (a is the magnitude of the

oscillation, k = 2�/� is the wavenumber, � is the
wavelength, and c is the phase speed of the traveling
wave).
A grid of 288 � 88 � 64 (streamwise, vertical, and

spanwise direction, respectively) is used here for all the
simulations. The grid is uniform in the streamwise and
spanwise homogeneous directions, and is stretched in

the vertical direction. In Fig. 3 the instantaneous vor-
tical structures visualized using isosurfaces of the second
invariant of the velocity gradient tensor, Q, are shown

for c/U = 0.0 and c/U = 0.4 (c/U is the ratio of the

wave speed to the freestream velocity). It can be seen

that the strong streamwise vortices that are character-
istic of stationary wavy walls (c/U = 0) are suppressed
as c/U increased from 0.0 to 0.4. Similar behavior has

been observed in the reference DNS [7]. Quantitative
comparisons are shown in Fig. 4, where the variations of
Ff and Fp as functions of the phase speed of the traveling

wavy wall, c/U, are shown (Ff is the total friction force,
Fp is total pressure force on the wall in the streamwise
direction, respectively). Here again our data are in good

agreement with the reference simulation [7].
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Fig. 3. Instantaneous vertical structures for the case of turbulent flow over a traveling wavy wall. (a) c/U = 0.0 and (b) c/U = 0.4.

Fig. 4. Variation of the force acting on the traveling wavy wall.
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