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Abstract

Turbulent gas-particle flows in the duct with fluid injection are simulated using large-eddy simulation technique. The

numerical calculations are performed by the Eulerian-Lagrangian approach for the fluid and solid phases respectively.
The model developed of motion of particles takes into account fluctuations of fluid velocity. The influence of inflow
conditions, and the size and place of injection of particles on their dispersion pattern are investigated. The results

obtained have a good agreement with the results computed on the base of Reynolds averaged Navier-Stokes equations
and experimental data.
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1. Introduction

Gas-particle flow research has applications to a vast

number of technological systems and industrial devices.
In technological applications the interaction of the
particles with the turbulent structure of the flow is an
extremely complex problem. The introduction of new

models and improved computer power allows making
more accurate computations performed with less
empiricism than before.

The large-eddy simulation (LES) of internal turbulent
flows induced by wall injection is considered in the
paper. Simulation of such flows is of great significance

for the design of heat exchangers and solid rocket
motors. In these applications, exact computation of field
of fluid flow plays an important role because it serves as

a background for simulation of condensed particles
formed during the combustion of solid fuel, their inter-
action and separation on a wall [1,2]. The purpose of
calculations employed is in the definition of optimal

initial parameters of duct flow and lead-in conditions of
solid particles.

2. Mathematical model and numerical method

The numerical calculations are performed by the

Eulerian-Lagrangian approach for the fluid and solid
phases respectively.

2.1. Basic assumptions

It is assumed that the particles are rigid spheres, there
are no particle–particle interactions, the density of the
dispersed phase is much more than the density of the gas

phase, the dominant force acting on the particle is the
drag force, and the influence of the particle phase on the
carrying gas is negligible.

2.2. Gas phase

The fluid flow calculations are based on the filtered
Navier-Stokes equations:
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where �, p, v, � are the density, the pressure, the velocity
and the kinematic viscosity. Sub-grid turbulent viscosity
is computed with the Smagorinsky formula:* Tel.:+44 (1483) 683222; E-mail: k.volkov@surrey.ac.uk
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where CS is the Smagorinsky constant. The sub-grid
length is assumed to be proportional to the filter width,
which then is related to the volume of grid mesh in three

dimensions:

� ¼ ð�x�y�zÞ1=3

where �x, �y, �z are the grid step size in the corre-

sponding coordinate direction. The present LES
calculations implicitly apply a box filter in each
direction.
The geometry of computational domain is shown in

Fig. 1 (side view). The left boundary of a duct is a solid
wall, and no-slip boundary conditions are set here. The
outflow boundary conditions are used on the outlet

boundary. The injection of fluid at normal to the lateral
surface of a duct is set (wall injection). The velocity of
fluid injection is constant along the longitudinal

coordinate.

2.3. Solid phase

The solid phase is treated by the Lagrangian

approach, which means that particles are followed in
time along their trajectories through the flow field. The
equations describing the translational motion of sphe-

rical particles are written as
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The drag coefficient is presented in the following form:
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At every given time step, the new position and the new
translational velocity of the particles are calculated

according to the forces acting on the particles. LES
allows fluctuating components to be obtained sponta-
neously from Eqs (3) and (4), unlike approach [1,3],

which uses normal distribution for fluctuating properties
of internal turbulent flow.

2.4. Numerical method

The filtered equations are solved numerically using a
finite volume method on a staggered grid of non-uni-
form cell size.

The numerical procedure employs a Chorin-type
projection method for the decoupling of momentum and
continuity equations. The second-order explicit Adams-

Bashforth time integration scheme is used to advance
the velocity field. The discretisation of the diffusive flux
is based on the central differences of second order of

accuracy. The sharp and monotonic algorithm for rela-
tive transport (SMART) is used to calculate the
convective fluxes [4]. The Poisson equation for pressure

is solved by the bi-conjugate gradients stabilised method
(BiCGStab) with preconditioning [5].

2.5. Parallelisation

The computational domain is divided into several
rectangular sub-domains. Each process holds some
ghost cells, which overlap inner cells of the adjacent

process. Values are copied from these to the ghost cells
when necessary. To minimise communications, the code
divides the computational domain in a way that mini-

mises the area of the touching faces and equilibrates the

Fig. 1. Geometry of computational domain.
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number of cells in the different sub-domains. The MPI
library is used for organisation of communication
between processors.

2.6. Results

A grid containing 100 � 100 cells in the duct cross
section and 300 sections downstream is used in a typical

variant of the calculation. The time step size is �t =
0.000018 s. About 50000 time steps are done. To obtain
a statistically reliable averaged pattern of motion of

particles about 30000 particles are tracked.
Fluid flow pattern was investigated depending on

intensity of fluid injection and Reynolds number Re =
vwh/�, where vw is the velocity of fluid injection, and h is

the half-width of the duct. The computed results are
compared with the approximate solutions, the available
benchmark solutions and experimental data.

The problem has a self-similar solution for inviscid
flow of incompressible fluid. The profiles of the velocity
in the x and y directions are defined by the following

expressions [6,7]:
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Fig. 2 shows profiles of axial velocity in some cross

sections of a duct. The velocity of fluid injection is vw =
�5m/s. The results obtained have a good agreement
with a self-similar solution. Also, the flow becomes fully
developed some distance from the left boundary, and the

axial velocity profiles are practically identical. Viscous
effects do not influence the flow structure in a duct.
Therefore, the inviscid solution can be used for com-

parison with calculation results in the viscous case. For
example, the longitudinal velocity has linear dependence
along its x-coordinate, and the profile of the lateral

velocity does not depend on the x-coordinate, and has a
universal form.
The results obtained show that the level of turbulence

can be computed in two steps. The first step is the cal-

culation of the velocity field without any turbulence
model using the Euler or Navier-Stokes equations. The
second step is the solution of the equations of the tur-

bulence model. The difference has a place far from
between the solution of the coupled problem and
developed step-by-step solution is located at x/h > 30,

and it can be explained by the compressibility effects.

Fig. 2. Profiles of longitudinal velocity. Comparison with self-

similar solution.

Fig. 3. Pattern of particle dispersion for rp = 10�m.
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The distribution of turbulence kinetic energy along the

x-coordinate has a parabolic form [8], and the dis-
tribution of its dissipation rate has a cubic dependence
against the x-coordinate, excluding the region near the
left boundary where the flow is not fully developed. It is

also confirmed by the results obtained on the base full
3D model [1,2].
The dispersion of particles is defined by the relation of

the particle relaxation time to the dissipation dynamic
time scale of the turbulence. The particles with radius rp
<10�m hit a target in the region with a maximum value

of fluid velocity turbulent fluctuations. Such particles are
dispersed strongly (see Fig. 3). The region of increased
particle concentration is formed in the vicinity of the
centreline of the duct. Inert particles penetrate to the

opposite wall, where the turbulence level is equal to zero,
and are not dispersed. The regions of irregular particle
concentration are formed near the separatrixes of tra-

jectories of particles (see Fig. 4).

3. Conclusions

The simulation of internal flow induced by the wall

injection shows that velocity fluctuations exercise an
essential influence on the dispersion of particles. The
results obtained have a good agreement with the results
computed on the base of Reynolds-averaged Navier-

Stokes equations and experimental data. The models
developed reasonably explain computational and
experimental data. In particular, they explain the for-

mation of regions of irregular particle concentration in
the internal duct flow with fluid injection.
Successful application of LES for calculation of

properties of internal turbulent flows makes possible

calculations taking into account more complex physical
and chemical effects. It requires development of sub-grid
scale models for compressible fluids, a connection
combustion model and the elaboration of corresponding

computational tools.
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Fig. 4. Trajectories of particles (left) and profile of concentration of particles (right) in the duct for rp = 20�m.
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