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Abstract

This paper presents a finite volume solver for the computation of three-dimensional viscous flows. A cell-centered

approach is used and a quadratic reconstruction of the unknowns is performed to compute the advective fluxes on the
cell faces. The gradients of the variables, necessary for the viscous fluxes, are constructed using Coirier’s diamond path.
A extended version of this method is proposed in this paper to ensure the consistency of the method whatever the

distortion of the grid. A fully implicit time integration procedure is employed with preconditioned matrix-free GMRES
solver.
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1. Introduction

In a finite volume method, the Navier–Stokes equa-

tions are integrated over mesh control volumes. This
leads to Eq. (1) in which advective fluxes Fa and diffusive
fluxes Fd are integrated over the surfaces delimiting the

cells:

ds

dt
þ 1

V

Z
S

FaðwÞ � n dS ¼ 1

V

Z
S

Fdðw;rwÞ � n dS ð1Þ

where s and w respectively denote the vectors for the
conservative and primitive variables

s ¼ ð�; �ux; �uy; �uz; �EÞT w ¼ ð�; ux; uy; uz; TÞT

ð2Þ

with collecting velocity u, fluid density �, pressure p,
temperature T, and total energy E; n is the surface
normal vector. This formulation ensures the con-

servativity of mass, momentum and total enthalpy

through the computational domain as well as the Ran-
kine-Hugoniot relations through discontinuities.
The solver is designed for three-dimensional unstruc-

tured meshes whose volume faces may be triangles or
(possibly non-planar) quadrilaterals. It is based on a
cell-centered approach so that the mean value of s over a

cell is assumed to be equal to the value at the cell gravity
center, leading to a second-order truncation error [1] for
the advective derivatives. Consequently, neither the

variables in w nor their gradients are available on the
faces. A reconstruction procedure, described in section
2, is used for the advective terms evaluation. The gra-

dient computation procedure is based on an extended
version of Coirier’s diamond path [2], presented in sec-
tion 3, which provides a consistent discretization of the
diffusive terms regardless of the irregularity of the mesh,

and exhibits good positivity properties.
A fully implicit time integration procedure is

employed. The Newton method is used to linearize the

equations resulting from the implicit discretization, and
the linear systems are solved by a preconditioned
matrix-free GMRES solver [3].

Finally, two test cases are presented to illustrate the
good accuracy properties of the solver.

*Corresponding author. Tel.:+32 436 69439; Fax: +32 436

69136; E-mail: @Didier.Vigneron@ulg.ac.be

923

# 2005 Elsevier Ltd. All rights reserved.

Computational Fluid and Solid Mechanics 2005

K.J. Bathe (Editor)



2. Advective terms discretization

The advective fluxes discretization consists in inte-
grating, by use of a Gauss quadrature formula, a
numerical flux ~Fð~wR, ~wL) over a face separating the

nodes L and R respectively. The computation of ~F is
performed by Roe’s flux difference splitting [4], Van
Leer’s flux vector splitting or by an advective upstream

splitting method (AUSM) [5]. The reconstructed values
~wR and ~wL are evaluated by a Taylor expansion:

~wR;L ¼ wR;L þ ðxG � xR;LÞTrwR;L þ
1

2
ðxG � xR;LÞHR;L

ðxG � xR;LÞ þ Oðh3Þ ð3Þ

where xG denotes the positions of the Gauss points, and

the hessian matrix H contains the second derivatives of
~wR,L. A constant reconstruction scheme (first-order)
only uses the left and right neighbours’ values but is

proven to be inconsistent on irregular meshes. A linear
reconstruction is necessary to ensure consistency. It
requires the computation of a first-order approximation

of the gradient, and one (four) Gauss points for a tri-
angular (quadrangular) face. A third-order method,
which leads to second-order truncation errors, is

obtained by using a quadratic reconstruction and three
(four) Gauss points for a triangular (quadrangular) face.
Such a scheme requires a second-order approximation of
the gradient and a first-order one for the hessian matrix.

The necessary derivatives are constructed as a linear
combination of node values over a selected stencil, the
weights being generated by a least square method [1].

3. Diffusive terms discretization

The diffusive fluxes of a newtonian fluid can be
written

Fd ¼
0T

� ruþ ðruÞT
h i

� 2
3� ðr � uÞ I

� uT ruþ ðruÞT
h i

� 2
3� ðr � uÞ uT þ krT

0
BB@

1
CCA ð4Þ

Their integration is performed by a Gauss quadrature

formula, requiring the gradients to be computed at each
face Gauss point. To obtain a consistent discretization
regardless of the irregularity of the grid, a second-order

approximation of the gradients is required.
A compact scheme based on Coirier’s diamond path

[2] is first generalized in three dimensions. This method
exhibits very good positivity properties, which avoids

the appearance of oscillations in the solution. The dia-
mond path is built by connecting each vertex of a face to
the left (L) and right (R) neighbour nodes, forming a

polyhedron � (of surface �) on which a Green-Gauss

formula is applied to compute the gradient at the face
center P:

rwP ¼
1

�

Z
�

w n d�þOðhÞ ð5Þ

The integration over the triangles of � is easily per-
formed, so that H!p appears as a linear combination of

values of w at L, R and at the face vertices. The latter are
reconstructed with a second-order accuracy from the
nodes surrounding the vertex. This discretization only

leads to a first-order approximation of the gradient on
the faces because P does not necessarily coincide with
the gravity center of �. The global scheme is thus

inconsistent on irregular grids.
An original modification is now proposed to restore

unconditional consistency (i.e. to obtain at least a first-
order truncation error for the diffusive derivatives) while

keeping the good positivity properties of the diamond
scheme. In the latter, the gradient is finally computed as
a linear combination of the unknowns at a set of nodes

surrounding the face. The weights, stored in ��, are now
modified by a correction �� in order to reach the
necessary approximation. For example, the x-derivative

must verify the following constraints of accuracy:

AT � þ��
� �

¼ d A ¼

vT1
vT2
..
.

vTN

0
BBB@

1
CCCA

vi ¼

1
xi � xp
yi � yp
zi � zp

1
2ðxi � xpÞ2
1
2ðyi � ypÞ2
1
2ðzi � zpÞ2

ðxi � xpÞ ðyi � ypÞ
ðyi � ypÞ ðzi � zpÞ
ðzi � zpÞ ðxi � xpÞ

0
BBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCA

d ¼

0
1
0
0
0
0
0
0
0
0

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

ð6Þ

As the number of nodes in the stencil is greater than
the number of constraints, we can impose that the
weights must be as close as possible to the values of the

diamond scheme, to keep the good positivity properties
of this method. This leads to minimizing

z ¼ 1

2

XN
i¼1

��2i ð7Þ

This optimization problem is then solved by the
Lagrange’s multipliers technique, leading to the follow-

ing corrections:

��T ¼ ðd� AT�ÞTðATAÞ�1AT ð8Þ
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This computation has been performed for the face center
P, which is the Gauss point on a triangular face. For a

quadrangular one, the correction should actually be
performed for the four Gauss points G. Rather than
repeating the procedure, it is more easy to use

rwG ¼ rwP þH ðxG � xPÞ þ Oðh2Þ ð9Þ

where the hessian matrix H is evaluated in the same way

as for the advective terms.

4. Boundary conditions treatment

The boundary conditions at the inflow and outflow
boundaries are imposed in the fluxes, i.e. in a weak way.

At solid walls, no-slip conditions are imposed in a strong
way, the boundary nodes being moved to the boundary:

ux ¼ uy ¼ uz ¼ 0 T ¼ Twall or
@T

@n
¼ 0 ð10Þ

5. Newton-GMRES scheme

A fully implicit scheme has been developed to over-
come the difficulties arising from the severe non-

linearities of our problems.
An iterative Newton method is aimed at the resolu-

tion of the non-linear systems

ds

dt
þ FðsÞ ¼ 0 ð11Þ

This method performs a linearization of the equations at
each time step, leading to the following linear system to

be solved:

1

�t
Iþ J sðnÞ

� �� �
�sðnÞ ¼ �F sðnÞ

� �
ð12Þ

where J denotes the Jacobian matrix of F, and �t is the
time step. In order to increase the convergence speed,
this time step is computed according to the switched

evolution relaxation (SER) method [6], which increases
it inversely to the residual norm reduction.
The generalized minimal residual (GMRES) algo-

rithm [3], based on a Krylov subspace method, is used to
iteratively solve the linear system (12). In this algorithm,
the full Jacobian matrix J is not required explicitly
(matrix-free algorithm) but rather in the form of matrix-

vector products, which can be computed by the finite
difference formula

J sðnÞ
� �

v �
F sðnÞ þ �v
� �

� F sðnÞ
� �

�
ð13Þ

This implementation avoids the costing storage and
computation of the Jacobian matrix. A preconditioner
reducing the conditioning number of the system is

required, however, to ensure good convergence of the
GMRES solver. Right preconditioning based on a block
incomplete factorization (BILU(k)) of an approximate
Jacobian is employed [7]. This Jacobian matrix is com-

puted with a constant reconstruction for the advective
terms and a classical diamond path for the viscous ones.

Fig. 1. Shock–boundary layer interaction on adiabatic flat plate. X-component velocity profile at shock impingement. Results

obtained with a quadratic reconstruction for the advective terms and the corrected diamond scheme for diffusive terms. The results are

compared with the computation on a bi-dimensional quadrangular mesh from Essers et al. [9].
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6. Results

The solver has been tested on two flow regimes: a
shock–boundary layer interaction and a subsonic flow

past a sphere. The perfect gas law is supposed and the
viscosity is evaluated by Sutherland’s law.

6.1. Shock–boundary layer interaction

The two-dimensional flow over an adiabatic flat plate

is studied on an extruded three-dimensional mesh. The
free stream Mach number and temperature are respec-
tively equal to 2 and 156K, and the Reynolds number is

2.96 � 105. The initial two-dimensional mesh is com-
posed of 18,000 cells (quandrangles in the boundary
layer and triangles everywhere else) and extruded six

times. The first point near the plate is located at y/L = 3
� 10�4 where the characteristic length L is the distance
between the plate leading edge and the shock impinge-
ment point. A mesh with severe distortion, presented in

Fig. 2(a), is also created from the latter.
Fig. 1 shows the x-component velocity profiles in the

recirculation zone at the shock impingement, computed

with the corrected diamond scheme and a quadratic
reconstruction for the advective terms on the distorted
grid. The comparison with the experimental results of

Hakkinen et al. [8] and previous numerical computa-
tions of Essers et al. [9] depicts good agreement. The
remarkably weak sensitivity of the solver to severe mesh
distortions is demonstrated in Fig. 2(b) where skin

friction and pressure distribution are presented.

6.2. Flow past a sphere

A subsonic flow past an isothermal sphere is studied.
The free stream Mach number and temperature are

respectively equal to 0.2 and 300K, and the sphere
temperature is also 300K. The mesh is composed of
270,000 tetrahedra. The flow has been computed for

Reynolds numbers equal to 118, 73.6 and 37.7. The
streamlines composed of a closed ring vortex behind the
sphere for Re = 118 are shown on Fig. 3. The length of

the recirculation zones are compared with the experi-
mental results of Taneda [10] on Fig. 4. A linear
reconstruction must be used for the advective terms to
avoid too large numerical dissipation. Surprisingly, the

corrected diamond only introduces a small improvement
of the solution, even on a distorted mesh. The diamond
scheme, even if theoretically inconsistent, seems to pro-

vide sufficiently accurate solutions.

(a) (b)

Fig. 2. Shock–boundary layer interaction on adiabatic flat plate. (a) Distorted mesh at the shock impingement. (b) Skin friction and

pressure distribution on the flat plate. Computation made with a quadratic reconstruction for the advective terms and the corrected

diamond scheme for the diffusive terms on regular and distorted grids.

Fig. 3. Streamlines around the sphere for Re = 118. d =

diameter. s = length of closed streamlines behind the sphere.
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7. Conclusions

A finite volume solver has been developed for the
computation of three-dimensional viscous flows. It uses
high-order methods such as quadratic reconstruction for

the computation of advective terms. A consistent version
of Coirier’s diamond path has been studied. Numerical
results have proven the very good accuracy of the

solutions, even on highly distorted grids. The corrected
diamond scheme appeared to improve the quality of the
solution but the classical scheme is quite accurate, even
if it is inconsistent.
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