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Abstract

A grid manipulation algorithm is presented that allows CFD calculations in complex moving geometries using block-

structured grids. An Arbitrary Lagrangian–Eulerian formulation of the flow problem is used. In terms of grid
manipulation, this means that grid nodes are moved in-between time steps without changing the grid topology. The
focus of the paper lies on the development of the grid manipulator.

The block-structured grids are constructed from the solution of the Laplace equation H2(�) = 0 obtained on an
unstructured grid in the same geometry. High quality meshes are constructed from the gradient lines and the potential
lines. As an illustration, a calculation of compressible flow in a screw compressor is set up with the constructed meshes.
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1. Introduction

Calculating the flow through a screw compressor is
very difficult. The main obstacle for simulations in screw
compressors is the movement of the rotors in the flow

domain. As the compression is volumetric, only a time-
dependent simulation of (at least) an entire compression
cycle is meaningful. Therefore the grid in the flow

domain has to move. Due to the specific geometry of
these compressors, the movement is very complex. In
this paper, the flow through a screw compressor is used

as a representative example of the grid manipulation
algorithm.

To perform the flow simulation, the time-dependent

Arbitrary Lagrangian–Eulerian (ALE) formulation of
the flow equations is used. The ALE method [1,2] allows
the grid to move with a velocity that is independent from
the flow solution. The only limitations are the need to

have a valid grid at each time step, and the restriction
that the grid topology must be maintained during time
stepping. The latter means that at each time step each

cell must be defined by the same cell faces and vertices.
The main advantage of this method is that the flow
equations can be solved time-dependently without need

for remapping or flow data interpolation between time

steps.
The grid manipulation algorithm presented in this

paper manipulates the nodes of the grid based on the
solution of the Laplace potential equation in the grid

domain. The use of the favorable characteristics of the
solution of a potential problem dates back to Winslow
in [3] and is a well-known technique [4,5]. The potential

solution is not explicitly obtained in Winslow’s method,
but the position of the mesh nodes reflects this solution.
The difference between the method described in this

paper and the methods based on Winslow’s idea, is that
in the present method the solution of the potential
equation is explicitly obtained on an unstructured grid

in the flow domain to allow more control over the use of
the potential solution. This unstructured grid has this
sole purpose and is in no other way related to the flow
calculations.

2. The grid manipulation algorithm

The grid manipulation algorithm is based on the

generation of 2D structured grids in sections of the
compressor house as illustrated in Fig. 1. A 3D grid is
constructed from these 2D slices and inlet and outlet

ports (with stationary grid) are added.
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The 2D structured grid in the compressor house is
constructed based on the solution of the potential
equation H2 (�) = 0 in the flow domain. To obtain this

solution, the flow domain is meshed with an unstruc-
tured grid (Fig. 1(b)). The unstructured grid generator is
an in-house algorithm [6]. On this unstructured grid, the

Laplace equation H2 (�) = 0 is solved with well-chosen
boundary conditions (Fig. 1(c)).
A valuable characteristic of the potential solution is

that the potential lines (lines of constant potential �)

never cross. Furthermore, the direction of the gradient
H� is perpendicular to the potential lines. The lines
tangent to H� are called gradient lines.

These characteristics are used in the generation of the
structured grid.
First, the domain is split into 2 blocks by defining a

line connecting the CUSPs T and B (Fig. 1(a)). We call
this line the division line. The middle part of the division
line follows a potential line � = �s. �s is thus chosen as

to avoid jumps in cell volume in the final grid. The upper
and lower parts of the division line are transitional lines,
where the potential � changes smoothly from �s to the
CUSP values.

A structured grid can now be constructed in each
block using potential lines and gradient lines of the
solution. The basic structured grid is defined as follows:

. Nodes on the outer wall are equidistant.

. Nodes on the division line are equidistant.

. Gradient lines are lines of constant tangential index

(radial lines).
. Nodes on the radial lines are equidistantly

distributed.

. Connecting nodes with constant radial index creates
tangential lines.

With constant potential boundary conditions, this
would mean that the grid lines are potential and gradient

lines (in accordance with Winslow’s method [3]). Such a
grid obtains high quality almost everywhere, except in
the vicinity of the CUSPs T and B (Fig. 2). This is

remedied by applying appropriate non-constant
boundary conditions varying linearly between CUSPs T
and B [7].

The final grid quality is strongly determined by the
spacing of the radial lines and the tangential lines. If
flow calculations are performed on a grid with neigh-

boring cells with strongly differing cell volumes, the
accuracy of the solution and even the convergence of the
problem are impaired. Such cells can be found mainly
around the upper and the lower part of the division line

(around the CUSPs T and B). In order to improve grid
quality, the originally equidistant spacing of nodes on

Fig. 1. Three steps in the generation of structured grids: (a) domain; (b) unstructured grid; (c) potential solution obtained on the

unstructured grid; (d) final structured grid based on the potential solution.
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radial lines is abandoned, except for the nodes asso-
ciated with the middle part of the division line.

For nodes associated with the upper and lower tran-

sitional parts of the division line, the equidistant radial
spacing is abandoned in favor of spacing according to a
geometrical series with factor qi. The factor qi is thus

determined that the radial sides of the two cells bor-
dering the division line are equal in length. The nodes on
radial lines attached to nodes on the outer wall are also

redistributed according to a geometric series, whereby
the factor qi evolves linearly from qT and qB to 1

(equidistant) in the points L and R (Fig. 1(a)) deter-
mined by the position of the rotor tips.
The grid obtained so far is of good quality throughout

the domain, and especially in the gaps between rotors
and between rotors and casing. Only in the vicinity of
the CUSPs T and B does the quality sometimes

deteriorate.
For certain positions, the angle between the division

line and the casing can be sharp. This sharp angle is
propagated in the structured grid. The result is the

emergence of very small cells and cells that are at a sharp
angle to each other.
If the aspect ratio is too large, tangential smoothing is

applied to a small region of the grid around the CUSP. In
this region the nodes are repositioned through interpola-
tion on the tangential lines. If necessary, radial smoothing

is applied to the nodes on the radial line attached to the
CUSP T or B to avoid sharp angles in cells.
With the algorithm described, high-quality 2D block-

structured grids can be generated (Fig. 1(d)). To use
these grids in a calculation, several 2D slices are con-
nected to form a 3D grid (Fig. 3). To allow freedom in
the construction of the 3D grid, and in particular the

axial spacing of it, the 2D slices used can be constructed
for any time step by interpolating between two gener-
ated 2D grids. If the difference between the two

generated grids is small (typically 1 degree rotor rota-
tion), it is safe to assume little degradation in quality of
the interpolated grids.

A rotation of the compressor rotors is in this way
translated in a rotation of the screw profile in the 2D

Fig. 3. The 3D grid used for the flow calculation.

Fig. 2. Poor quality grid around CUSP T due to constant

potential boundary condition.
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slices. Through interpolation between generated grids,
the 3D grid can be moved for each time step while
maintaining grid topology.

3. Flow calculations in a screw compressor

The actual flow calculations are performed by a
commercial package capable of performing ALE calcu-
lations. An interface is constructed that moves the grid

for each time step, based on the grids supplied by the
grid generator.
For the illustration of the grid manipulation algo-

rithm, a screw compressor is chosen (Fig. 3). The

structured grid in the casing of the compressor exists of 2
blocks each with 360 cells tangentially, 3 cells radially
and 399 cells axially. The total number of cells (includ-

ing inlet and outlet port) is 973,252. A grid with 3 cells
radially will capture all physical phenomena correctly,
except fluid–wall friction, as the boundary layer is ill-

captured. The losses from friction are small versus the
leakage flows, but the reduction in grid size is significant.
As compressed fluid, air is used. The compression is

governed by the ideal-gas law. All walls are considered
adiabatic. The rotational speed of the rotors is 15750
rpm left and 10500 rpm right. At inlet and outlet, a
pressure boundary condition of 1 bar absolute is

applied. Due to this boundary condition, over-com-
pression will occur (the pressure rise from the internal
compression is up to 2.3 bar absolute) and high-pressure

air will be purged into the outlet. Figure 4 shows a plot
of the purge pressure during start-up until periodic
operation.

There are no experimental data available for the

simulated compressor. The results shown here are only
meant as an illustration of the capacity of the grid

manipulation algorithm.

4. Conclusion

A grid manipulation algorithm is presented, which,

linked to a commercial flow solving package, is capable
of performing Arbitrary Lagrangian–Eulerian calcula-
tions on block-structured grids.
The structured grid is constructed based on the solu-

tion of a potential equation with appropriate boundary
conditions. This solution is explicitly obtained in the
flow domain on an unstructured grid. This allows for

extended control over the grid generation.
With this method, it is possible to perform ALE cal-

culations in geometries that have very complex moving

boundaries. To illustrate the possibilities of the grid
manipulator, an ALE calculation was presented in a
screw compressor.
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Fig. 4. Relative pressure vs degrees rotation.

J. Vande Voorde et al. / Third MIT Conference on Computational Fluid and Solid Mechanics 913


