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Abstract

This paper presents a compact and efficient finite-volume lattice Boltzmann formulation on three-dimensional
unstructured grids based on a cell-vertex scheme. The resulting model has been tested against the laminar flow past a
sphere at low Reynolds numbers.
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1. Introduction

During the last decade, the Lattice Boltzmann
Method (LBM) evolved into an interesting alternative to
conventional CFD methods and, due to the refinements

and the extensions of the last years, it has been used to
successfully compute a number of nontrivial fluid
dynamics problems [1,2,3,4,5]. The main advantages of
the LBM are its computational simplicity, relative

locality and amenability to parallel computing. How-
ever, a recognized limitation of the original LBM is its
restriction to regular, uniform lattices and this limitation

becomes particularly severe whenever high local reso-
lution is required. Over the recent years, this limitation
has motivated a wide body of research to the point that

today many options are available to deal with realisti-
cally complex geometries [6,7,8]. Particularly interesting
options are recent attempts to formulate LB on a fully
unstructured grid [8,9] using a finite-volume formulation

of the cell-vertex type. In previous papers [9,10], it has
been shown that the bi-dimensional implementation of
this method with coarse-graining triangles tolerates sig-

nificant grid distortions without showing any
appreciable numerical viscosity effects at second order in
the mesh size. In this work, we present the three-

dimensional generalization of the Unstructured Lattice
Boltzmann technique (ULBE as Unstructured Lattice
Boltzmann Equation), in which geometrical flexibility is

achieved at the level of coarse-graining tetrahedra. The
ease and the accuracy of calculating aerodynamic forces

are shown by simulating low Reynolds number fluid
flows past a sphere.

2. ULBE numerical formulation

The differential form of the single-time relaxation

Lattice Boltzmann equation reads as follows:

@tfi þ~ci � ~@xfi ¼ �
fi � feqi
�

ð1Þ

where the particle distribution function (also called
population) fi (~x, t) represents the amount of fluid per
unit volume moving with velocity~ci at the site ~x and at

time t. The right-hand side of Eq. (1) is the Bhatnagher-
Gross-Krook (BGK) collision operator [11], which
represents molecular collisions via a single-time relaxa-
tion (� as the time-scale) toward ‘local equilibrium’. The

local equilibrium function feqi depends only on the
locally conserved quantities (such as mass density and
momentum density) and are carefully chosen so that

Galilean invariance and the Navier-Stokes equations are
recovered in the limit of weak departures from feqi [2]:

feqi ¼ �!i 1þ~ci �~u
�
c2s
þ 1

2c4s
~ci �~uð Þ � u2
� �� �

ð2Þ

where cs is lattice sound speed.

The macroscopic local quantities may be computed at
any instant during the evolution by taking the appro-
priate discrete velocity moments of the distribution

functions:
*Corresponding author. Tel.: +39 06 7259 7170; Fax: +39 06

2331 0028; E-mail: stefano.ubertini@uniroma2.it

895

# 2005 Elsevier Ltd. All rights reserved.

Computational Fluid and Solid Mechanics 2005

K.J. Bathe (Editor)



� ¼
X
i

fi ð3Þ

~u ¼
X
i

fi~ci ð4Þ

In order to recover faithful fluid dynamics, the set of

discrete speeds must be chosen in such a way as to
guarantee mass, momentum and energy conservation, as
well as rotational invariance. In the present formulation

we have used the nineteen-speed model (known as
D3Q19 [2]) consisting of one speed-zero particle, six
speed-one particles (nearest-neighbor connection to face

centers) and twelve speed-two particles (particles
streaming to the edge-connected neighbors).

The traditional discrete Boltzmann equation can be

derived by applying an explicit finite difference scheme
to Eq. (1). A square lattice is used, particles can only
reside on the nodes and at each time-step move to their
nearest neighbours. The corresponding kinematic shear

viscosity is related to the relaxation time by 
= c2s (� �
dt/2) [2].

The ULBE approach, to numerically solve Eq. (1), is

instead a finite-volume scheme based on a space dis-
cretization into tetrahedral elements. To each node P of
the discrete grid, we associate a set of 19 discrete

populations fi,, which represent the unknowns of the
problem. The set of K tetrahedra Tk(P) (see Fig. 1)
which share P as a common vertex defines the finite
volume �P associated with node P. Referring to the

generic k-th tetrahedral (Fig. 1), the point Ok is the

centre of the tetrahedral, Em are the midpoints of the
edges that emanate from vertex P and Sjl are the centres

of surfaces identified by nodes (P, Nj, Nl).
Application of the Gauss theorem to each finite

volume �k yields the following set of ordinary differ-

ential equations:

@tfiðP,tÞ ¼
1

VP

XK
k¼0

�ik ��ikð Þ ð5Þ

where the sum k runs over the control volume �P

obtained by joining the centers Ok with points Sjl and

Em. In the above, VP is the volume of �P=[k�k.
Finally, �ik denotes the flux associated with the

streaming phase of the i-th population and �ik is the
contribution of the collision arisen from the integration

of the collision term fi � feqi /� over the volume �k.
The detailed expressions of the streaming and colli-

sion matrices Sik and Cik=Ck	ik give the following

general form of the ULBE:

@tfiðP,tÞ ¼
X
k

SikfiðPk,tÞ �
1

�

XK
k¼0

Cik fiðPk,tÞ � f eqi ðPk,tÞ
� �

ð6Þ

For the time discretization it is sufficient to prescribe the
size of the time-step and the solution of Eq. (6) is

obtained by marching in time from the prescribed initial
condition. In this work we have used the ‘covolume
method’ to deal with both no-slip and free-slip wall
boundaries [8,9]. In the covolume method, the fluxes

across boundary surfaces are evaluated by explicit
interpolation at the boundary surfaces.
At the inlet boundary a prescribed velocity profile is

imposed, whereas constant pressure is imposed at the
outlet sections. This is allowed by a straightforward
three-dimensional extension of the procedure developed

in [9,10], in which the computational domain is aug-
mented with one or more buffers of uniform tetrahedra.

3. Numerical results

As a preliminary step, a three-dimensional driven

laminar flow in a circular pipe has been simulated in
order to measure numerical viscosity. For different
values of � varying between 0.01 and 0.001, it was found

that numerical viscosity effects are within second order
of accuracy in space and the constant kinematics visc-
osity reads as follows:


 ¼ c2s � ð7Þ

which is exactly the expression found in two dimensions

[9,10].
Fig. 1. Geometrical layout of the cell-vertex finite volume

formulation.
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For the validation of the present numerical method,
numerical simulations of the laminar flow past a sphere

(10 < Re < 100) and comparisons with available lit-
erature data have been performed.
The unstructured grids used in the computations

consist of a number of nodes in the range 53,800–
460,000 for Re = 10 and Re = 100 respectively. In
Fig. 2 the latter grid and the coordinate system are
shown.

Upon reaching steady-state, the drag coefficient, Cd, is
measured. In a hydrodynamic (Navier-Stokes) repre-
sentation, the friction contribution to drag (viscous

stress tensor) requires the computation of the velocity
gradients. The LB approach has the nice property that
the stress tensor is locally available as a linear combi-

nation of the populations:

Sab ¼
X
i

ciacib � 	abc2s
� �

� fi � f eqi
� �

a,b ¼ x,y,z ð8Þ

However, this property is not fully exploited in the tra-
ditional LB because the body surface does not generally

lie on grid points. The advantage of ULBE is that no
interpolation is required because the body surface is
made of grid points. As a result, in the ULBE for-
mulation both pressure and viscous contributions to

drag are locally available.
Figure 3 shows the computed drag coefficient com-

pared to numerical and experimental data found in the

literature [12,13,14]. An excellent agreement is observed
over the range 10–100 of Reynolds number.

The drag coefficient is an integral quantity and its
prediction does not generally imply a correct prediction
of the flow field. One of the hardest tests is the prediction

of pressure distribution around the sphere. The accuracy
of the method is demonstrated by the pressure coefficient
trend as a function of the angular coordinate, �, shown
in Fig. 4 for Re = 100. The agreement with the

numerical data found in the literature [14] is excellent.

4. Conclusions

Summarizing, the ULBE method shows significant
potential for the accurate calculation of flows in com-

plex geometries. Its crucial asset is the on-line
availability of the kinetic tensor, which provides two
crucial advantages over hydrodynamic techniques,

namely: (i) there is no need to solve the Poisson problem
to obtain the fluid pressure, (ii) there is no need to take
space-derivatives to compute the stress tensor.

In order to fully capitalize on the above assets, further
upgrades of the time-stepping procedure are needed.
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