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Abstract

In this paper we consider instability of incompressible fluid flow in a rotating cavity. Identification and character-
isation of mechanisms related to the laminar-turbulent process in rotating cavities should improve the prediction
methods and lead to new more effective control strategies, of considerable importance in practical flow. Both direct

numerical methods and linear theory are used to investigate flow in the rotating cavity. Direct numerical simulation is
based on an effective pseudo spectral Chebyshev-Fourier method for solving 3D Navier-Stokes equations. Linear
theory considers the complete rotor/stator and rotor/rotor flows. The spatio/temporal development of the instability

structures that appear in the first stage of laminar-turbulent transition is investigated. The instability structures are
interpreted in light of the type I and type II instabilities.
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1. Introduction

Flows in rotating cavities are very important from

both theoretical and practical points of view. Typical
industrial configurations are cavities between com-
pressors and turbine disks. Flow around a single

rotating disk, rotor/stator flow and forced radial flow
between rotating disks are the main configurations
investigated numerically and experimentally. The lami-

nar-turbulent transition process in the flow around a
rotating disk or in the rotating cavity is related to the
type I and type II generic linear instabilities. The type I
instability is due to the presence of an inflection point in

the boundary layer velocity profile. The mechanism for
the type II instability is related to the combined effects of
Coriolis and viscous forces.

In spite of intensive work and numerous papers
devoted to the instabilities associated with single rotat-
ing disk flow [1,2,3], and associated with differentially

rotating disk flow [4,5,6,7,8,9], no full understanding of
the laminar-turbulent transition flow has been achieved
and many problems remained unsolved. In 1995, Ling-

wood [1] discovered numerically, using LSA, that the
flow around a rotating disk is absolutely unstable. It was

also demonstrated using linear theory that both
boundary layers in the rotor/stator cavity are absolutely
unstable and the critical Reynolds numbers of the

absolutely unstable areas were given [4,7,8]. In the pre-
sent paper we focus attention on the spatio/temporal
development of the instability structures that appear in

the rotating cavity. Computations are performed using
direct numerical simulation and results are discussed in
light of our linear results. Investigations are performed

for different cavities, i.e. cylindrical, annular with and
without throughflow.

2. Mathematical model and numerical method

We consider incompressible flow in two geometrical

configurations: (a) annular cavity radially confined by a
shaft and a shroud, and (b) annular cavity with the
forced flow (Figs 1(a) and 1(b)). The radius of the inner

end-wall of the cylindrical cavity, R0=0. The rotor
rotates at uniform angular velocity � = � ez, ez being
the unit vector. The flow is controlled by three physical
parameters, which are the rotational Reynolds number

based on the outer radius, Re=R2
1�/�, the aspect ratio

L=(R1 � R0)/2h, and the curvature parameter
Rm=(R1+R0)/(R1�R0). The governing equations

are the incompressible 3D Navier-Stokes equations.
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The numerical solution is based on a pseudospectral

collocation Chebyshev-Fourier Galerkin approximation
[5,6]. The time scheme is semi-implicit and second-order
accurate. It corresponds to a combination of the second-
order backward differentiation formula for the viscous

diffusion term and the Adams-Bashforth scheme for the
non-linear terms. The method uses a projection scheme
to maintain the incompressibility constraint. The

boundary conditions are as follows: no-slip boundary
conditions at any rigid walls u=w=v=0. For the
azimuthal velocity component the boundary conditions

on the rotating walls are given by: (Rm + r)/(Rm + 1).
We proceed as follows: The rotation of the rotor

is increased step-by-step with small increments
�Re=1000. The solution obtained for smaller Re is

then used as an initial condition for higher Reynolds
numbers.

3. Selected results and discussion

The investigation has been carried out for the two
types of cavities shown in Figs 1(a) and (b). For the
annular rotor/stator cavity radially confined by shaft

and shroud, calculations have been performed for the
aspect ratio L=5 and the curvature parameters
Rm=5, 3 and 1.5 and for different end-wall boundary

conditions. For the annular cavity with throughflow,
calculations have been performed for L=3.37 and
Rm=5.
Let us consider first the flow in the rotor/stator cavity.

The base flow consists of two disjoint boundary layers
above each disk, with fluid pumped radially outward
along the rotating disk and radially inward over the

stationary disk. Our linear results obtained for the

cylindrical cavity have shown that the stationary disk

boundary layer is far more unstable than the rotating
one, with the following critical local Reynolds numbers,
Re	 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r�2�=�

p
: stationary disk boundary Re	crty-

peI=47.5 and Re	tcrtypeII=34.7; rotating disk:

Re	crtypeI=278.6 and Re	crtypeII=90.23. Our investi-
gation has shown that almost the whole convectively
unstable area in the stationary disk boundary layer is

absolutely unstable at Re	cra=48.5. For the rotating
disk boundary layer we received Re	cra=562.
In the annular cavity as in the cylindrical one the

stationary disk boundary layer turned out to be far more
unstable than the rotating one. However, we have found
that the end-wall boundary conditions have a large
influence on the instability characteristics of the flow

and that the most unstable is the flow with shaft
attached to the rotor and shroud attached to the stator.
Results obtained for this configuration are analysed

below. In the stationary disk boundary layer, for the
lower rotational Reynolds number Re, we observed both
cylindrical waves, interpreted as type II instability, and

strongly 3D spiral vortices, which are interpreted as type
I instability. Example solutions are presented in Figs
2(a) and (b), where the iso-lines of the azimuthal velocity

component obtained for Rm=3, L=5 and
Re=26,500 in the azimuthal section of the stationary
disk boundary layer (z=�0.95) and in the meridional
section are shown. In the stationary disk boundary layer

(Fig. 2(a)) we observe two pairs of rings, which dom-
inate at the lower local Reynolds number
Re	 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r�2�=�

p
, and nineteen spiral vortices, which

dominate at higher Re	. For higher rotational Reynolds
numbers only spiral vortices are observed in our gra-
phics. In the rotating disk boundary layer (Fig. 2(b),

Re=26,500, Rm=5, L=3) we observe one 2D

Fig. 1. Schematic picture of the annular rotating cavity without (a) and with (b) throughflow.

E. Tuliszka-Sznitko et al. / Third MIT Conference on Computational Fluid and Solid Mechanics 893



disturbance of the large wave number �*/h�8. The type
II disturbances coming from the stationary disk
boundary layer are transported up, by the rotating inner
end-wall, to the rotating disk boundary layer and dis-

turb it. These disturbances are then convected by the
main flow in the rotating disk boundary layer towards
the shroud. The spatio/temporal analysis of disturbances

in the stationary disk boundary layer has shown that the
type I and type II disturbances propagate in the opposite
direction. The type II disturbances are convected

downstream towards the shaft, whereas the type I vor-
tices propagate upstream towards the shroud. In the
animation of the flow the upstream propagation of the
type I disturbances are clearly visible, which indicates

that flow can be absolutely unstable.
We have found that transition to unsteadiness is

subcritical for smaller Rm (Rm=1.5) and supercritical

for higher Rm (Rm=3, 5). For the cylindrical cavity
(Rm=1 and L=5) we observed oscillatory transition
[6].

We have investigated the spatio/temporal behaviour
of the disturbances of the flow in an annular cavity with
throughflow. For all considered mass flow rates, dis-

turbances were convected downstream. Our
investigations have also shown the large influence of the
function used to approximate the radial forced profile
on the instability structure.
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Fig. 2. The iso-lines of the azimuthal velocity component (Rm=3, L=5, Re=26,500) obtained (a) in the azimuthal section

(z=�0.95) and (b) in the (r*/h,z) plane (’=0).
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