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Fully developed two-phase liquid-liquid flow in a finned duct
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Abstract

Numerical simulation has been made of incompressible two-layer stratified flow containing immiscible fluids in a duct
whose cross-sectional area varies periodically in the streamwise direction. The results correspond to oil-water flow of
fixed volumetric flow rates. Solutions were obtained for a range of Froud number. Two configurations of the duct were
considered: duct with fins attached to the bottom plate and duct with fins attached to the top plate. These config-
urations represent an idealized model of a certain type of locking and regulating device. The results demonstrate the

effect of the fin location on total volumetric flow rate.
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1. Introduction

Flows possessing multiple distinct immiscible fluids
are ubiquitous in natural and industrial processes. One
of the most important illustrations is production log-
ging. Most oil wells produce a mixture of oil, water and
gas. Diagnosis and control of production of unwanted
fluids is a growing concern in the industry. Simulation of
interfacial flow problems, via numerical solution of
appropriate partial differential equations, is the princi-
pal part of a fundamental understanding of such flows.

In the present research stratified flow possessing
immiscible fluids is studied (where the less dense phase,
usually oil, flows above the more dense phase, usually
water, with a defined interface). The chosen duct con-
figuration represents an idealized model of a certain type
of locking and regulating mechanism. The objective is
the description of the flow field and moving interface
and the understanding of the mechanism that governs
the flow. Stratified flows have been the topic of numer-
ous numerical and experimental investigations due to
their applications [1,2,3].

2. Formulation of the problem

Consider a two-layer stratified flow in a duct whose
cross-sectional area varies periodically in the streamwise
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direction. The more dense fluid flows along the bottom
of the duct (fluid h), and lighter fluid (fluid 1) forms the
top layer. Fluids are assumed to be incompressible and
immiscible. Two configurations of the duct are con-
sidered: duct with fins attached to the bottom plate and
duct with fins attached to the top plate. The identifica-
tion of the periodicity characteristics enables the flow
field analysis to be confined to a single isolated module.
The duct configuration and the solution domain selected
are depicted in Fig.1 for case 1.

3. Mathematical formulation

The interface position must be determined as a part of
the overall flow solution. When two fluids cannot
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Fig. 1. Flow configuration.
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possess mixed states, it is often useful to represent them
in terms of volume fractions. The interface is treated by
introducing a function C(X,Y) that is defined to be equal
to 1 at any point occupied by fluid 1 and zero elsewhere.
When averaged over the cells of a computing mesh, the
average value of C in a cell is equal to the fractional
volume of the cell occupied by fluid 1. The C function is
utilized to determine which cells contain an interface and
where one or the other fluid is located in those cells. The
algorithm was developed to find the value of C in each
cell.

The mathematical formulas for the considered task
are based on the Navier-Stokes system of equations:
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where viscosity and density are the known functions of
coordinates:

p=p(l1-C)+pnC

where p, = density of fluid h, and p; = density of fluid 1,
and

o= H1fh
Nl(l - C) + MhC

where py, = viscosity of fluid h, and p; = viscosity of
fluid 1.

Dimensionless variables are defined by the following
formulas:
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The velocity components exhibit periodic behavior:

U(0,Y) = U(L",Y)
V(0,Y) = V(L*,Y)

There is, however, another type of periodicity condition
for the pressure:

P(L*,Y) =P(0,Y) -1
Slip boundary conditions are used at the duct wall:

U(X,0) = U(X,1) =0
V(X,0)=V(X,1) =0

Dimensionless parameters of the task are Reynolds
number, Re = v*p*H/u*; Froude number, Fr = v*?/gh;
and volumetric flow rate, K; = [AUdY/[UdY, where
A is the cross-sectional area occupied by fluid h.

4. Solution method

The governing equations, together with the appro-
priate boundary conditions, are solved numerically by
way of a control volume method and the SIMPLER
algorithm. A numerical scheme for solving the general-
ized fully developed regime is described in [4]. It employs
the cyclic tridiagonal matrix algorithm for the solution
of the difference equations. The scheme used for present
research is analogous but more effective. The algorithm
used to define the interface is similar to the well-known
VOF algorithm [5]. The solutions were obtained using a
grid having 500 x 50 nodal points, respectively, in the X-
and Y-directions.

Numerical calculations were performed for the fol-
lowing values of dimensionless variables: H = 1, L = 10,
1=10.6,h =03, Re = 110, Fr = 0.012+10*, K, = 0.6.
Quantities of viscosity and density correspond to oil and
water: pu; = 1.22, p, = 0.78, p; = 0.88, p, = 1.12.
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Fig. 2. Flow field and interface location, Fr = 0.06.
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Fig. 3. Flow field and interface location, Fr = 0.06 (case 2).
Table 1
Total volumetric flow rate for the different Froud numbers
Fr 0.012 0.06 0.1 0.12 0.5 1€20
G up 0.596184 0.674497 0.714933 0.717441 0.714652 0.711988
down 0.491913 0.617382 0.697568 0.704579 0.705317 0.700876
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Fig. 4. Dimensionless friction at the walls of the channel.
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5. Results and discussion

The presence of the fins causes the appearance of
recirculation zones. Portrayals of the flow field via
streamline maps and interface configuration are shown
in Figs 2 and 3, respectively, for cases 1 and 2.

The total volumetric flow rates for the different Froud
numbers are presented in Table 1. As can be seen from
the data, the volumetric flow rate for case 2 is always
greater than for case 1. One of the explanations of this
phenomenon is based on terms of developing region.
For the chosen parameters of the fluids, the Reynolds
number for fluid 1 is later than for fluid h. Thus, the
developing region, in which the velocity distribution
adjusts to the duct geometry and the wall friction, is
later for case 2 than for case 1. As is well known, the
maximal pressure losses occur in this region. Hence, the
volumetric flow rate for case 2 is always greater than for
case 1 due to the developing region for case 2 being
shorter than for case 1. As can also be seen from Table
1, the dependence of the volumetric flow rate on the
Froud number has a non-monotonous behavior.

Dimensionless friction at the walls is presented in Fig.
4 for both cases and for different Froud numbers. One of
the practical important points of the result obtained is

the following. Power is proportional to volumetric flow
rate and pressure drop. Since calculations were per-
formed for a constant pressure drop, less power is
needed to circulate the same volume of fluids when fins
are situated at the top wall.
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