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Abstract

The receptivity of a Bickley jet to a time-harmonic symmetric (S-class) and anti-symmetric (AS-class) vortical
excitation is reported. Unlike wall-bounded flows, the eigen-spectrum of jets reveals the presence of multiple dominant

modes. The S-class displays the presence of upstream propagating disturbances. It is reasoned that, due to the limited
streamwise extent of the domain, experiments and computations on round jets do not always correlate with the linear
stability properties. For DNS, a new compact scheme (OUCS4), introduced in [1], along with RK4 time stepping is

used. A new filtering procedure is advocated in the radial direction, which removes the numerical instability at the core
(due to a mathematical singularity) and allows us to study the receptivity of round jets to different classes of excitations.
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1. Introduction

Our present interest is to study the viscous instability

of jets by using the eigenvalues (along with their direc-
tionality of propagation), as cataloged in [2]. In addition
to usual classification (into S-class or varicose mode and

the AS-class or the helical mode), such instabilities have
also been labeled as shear layer and preferred modes [3].
Danaila et al. [4] have reported from their DNS results
that the disturbances switch from helical to varicose

mode, when Re increases from 200 to 500. It is experi-
mentally noted for plane jets [5], that the flow is strictly
laminar when Re is less than 10. When Re exceeds 50,

irregular turbulent fluctuations develop. In actual flow,
simultaneous presence of multiple modes decides the jet
flow evolution. Hence, a 3-D DNS for a round jet is

undertaken to relate the coherent structures with the
eigenfunctions of the Bickley jet shown in Fig. 1 for anti-
symmetric excitation [2].

2. Governing equations and auxiliary conditions

Three-dimensional, unsteady, compressible, non-
dimensionalized Navier-Stokes (NS) equations in

conservation form are solved. These equations in the
generalized curvilinear coordinate system are given as
follows:
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where �, � and � are the generalized coordinates in the
computational plane and J is the Jacobian of transfor-

mation from the physical to the computational plane.
The ideal gas equation is used to relate pressure, density
and temperature. The molecular viscosity is calculated

using the Sutherland’s law, with the Sutherland’s con-
stant chosen as 110K and the Prandtl number taken as
0.7. The radiation and outflow boundary conditions on
the lateral and the outflow boundary respectively, are

the same as given in [6]. At the inflow, all values are
equal to the jet centerline values, except the axial velo-
city, which is taken as the Bickley jet profile parallel to

the jet axis and given by:

UðzÞ ¼ cosh ða�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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with a=0.88136.

*Corresponding author. Tel.: +1 (850) 645 1740; Fax: +1

(850) 644 4053; E-mail: ssircar@math.fsu.edu

854

# 2005 Elsevier Ltd. All rights reserved.

Computational Fluid and Solid Mechanics 2005

K.J. Bathe (Editor)



3. Numerical methods

The governing equations (1) are solved using OUCS4

(for spatial discretization) and RK4 temporal dis-
cretization [1]. The time step �t is taken as 2.5� 10�3.
The radial and the stream-wise extent of the computa-
tional domain is 10R and 12R respectively, which is

chosen using 71, 32 and 52 points in the r-, �- and z-
directions, respectively. The grid in the �-direction is
equi-angular, while in the r- and z-directions it is stret-

ched in an arithmetic progression. To avoid spurious
reflections, an 8th-order filter is used in the axial (z-) and
the azimuthal (�-) directions. A spectral filter F(kr),

which is the same transfer function of the 1st derivative
of OUCS4 for interior points, is used in the radial
direction after every 100 time steps. The filter is shown in
Fig. 2. This function windows the Fourier transform of

the numerical solution (Q) (where Q(r, �, z)
=
R

~Qðkr; �; zÞeikrrdr) that exhibits the presence of high
wave number components at the jet core due to the

numerical instability introduced by a mathematical

singularity at r = 0. If the unknowns at the core are
obtained by the interpolation formula given in [7], then
the solution develops a trough at the core. Such a flow

profile suffers an inflexional instability – an inviscid
mechanism. This instability triggers a spurious transi-
tion. Instead of that, if one filters the solution by the
above-mentioned filter in the spectral plane and the fil-

tered solution is then inverse-transformed to obtain the
physical variable, then no such spurious inflexional
instability occurs.

4. Results and discussion

4.1. Eigen-spectrum of a Bickley jet

Sengupta et al. [2] report the behaviour of the eigen-
spectrum for two classes of disturbance. For the anti-
symmetric disturbances (AS-class), the displayed mode
in Fig. 1(a) is violently unstable with spatial growth rate

given by �i=�0.1744721 and whose energy propagates
with the group velocity, Vg=0.7321 in the downstream
direction. In contrast, the displayed eigenvector in Fig.

1(b) has the wave property given by �r=1.2340,
�i=1.411685 and Vg=0.5440. This mode is oscillatory
across the middle of the shear layer, while it damps in

the downstream direction.
In contrast, the symmetric disturbances are less

unstable, with some modes moving upstream that only
exist for low frequencies [2].

4.2. DNS of a round jet

A three-dimensional DNS of a Bickley jet (M1= 0.5,
Re = 500) is reported. The OUCS4 scheme for spatial
derivatives in the r- and z-directions, and the DRP

scheme of Tam et al. [8] is used in the �-direction. Two

Fig. 1. Eigenvectors for AS- class disturbance field (Re=500 and !0=0.5) for (a) an unstable mode and (b) a very stable mode. Solid

lines are for real part and chain-dotted lines are for imaginary part.

Fig. 2. The spectral filter used in the radial direction for all the

physical variables.
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classes of time-harmonic vortical excitation (with !0 =
0.2, implying that the excitation repeats itself after every
time interval of 10�) are considered at the jet inflow
plane. For the S-class, a vortical disturbance (uds, vds)

(the form of these disturbances are the same as given in
[8], with a half-width equal to the jet-width) is imposed.
For the AS-class, an anti-symmetric vortical pulse (given

by udas= uds sin(2�), vdas= vds sin(2�)) is used at the
inflow plane.
In Fig. 3, the axial velocity distribution in the (r–z)-

plane is shown for the symmetric vortical excitation case

at the indicated times. For the S-class excitation, the
flow is highly stable. For this excitation, the flow is
nearly symmetric as well as time-periodic – as seen in

Fig. 3. Disturbance axial velocity component for the symmetric vortical excitation at the indicated times, for Re=500 and !0=0.2 in

the (r–z) plane.

Fig. 4. Disturbance axial velocity and disturbance pressure for S- (top) and AS- (bottom) vortical excitation in the (r–�) plane at

T=120, z=4R, Re=500 and !0=0.2.
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Fig. 3, while the pressure and the axial velocity plots
shown in Fig. 4 for the AS-class excitation show loss of

coherence away from the core due to spatial instability.

5. Conclusions

A time-harmonic case of vortical excitation at the

inflow of a round jet at Reynolds number 500 and jet
centerline Mach number of 0.5 has been computed by
solving the full 3-D Navier-Stokes equation, using a new
compact scheme for spatial discretization [6] along with

RK4 time-stepping. A new filtering technique is advo-
cated in the radial direction to remove the mathematical
singularity that gives rise to spurious inflexional

instability at the jet core. The computed flow fields due
to symmetric and anti-symmetric vortical excitation at
the jet exit plane display flow that is stable for the former

and unstable for the latter.
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