
Incompressible velocity approximations for incompressible fluid

flow using DG methods

Dominik Schötzau*
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Abstract

We describe a discontinuous Galerkin method for the incompressible stationary Navier-Stokes equations whose main

feature is that it provides a globally divergence-free approximate velocity. This is achieved by a suitable use of a simple,
element-by-element post-processing of the completely discontinuous approximations typical of these types of methods.
Optimal error estimates are proved and an efficient iterative procedure to compute the approximate solution is shown to

converge. Numerical results are displayed that verify the theoretical rates of convergence.
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1. Introduction

In this paper, we report on the results obtained in [1].
We show how to solve a difficult issue related to the

devising of discontinuous Galerkin (DG) methods for
the incompressible Navier-Stokes equations, namely,
that locally conservative DG methods are not energy-
stable and that energy-stable DG methods are not

locally conservative unless the approximate velocity is
exactly divergence-free. In fact, the current DG methods
for the Navier-Stokes equations, namely, [2] and [3] are

not locally conservative.
It is well known that it is extremely difficult, if not

impossible, to construct finite element spaces for exactly

divergence-free velocities. However, we show here that it
is possible to avoid having to construct such spaces and
still obtain an exactly divergence-free approximate

solution. Paradoxically, such an approximation, whose
normal components across inter-element boundaries
must be continuous, is obtained by taking advantage of
the discontinuous nature of the approximations given by

DG methods.
In this paper, we sketch the main idea of the con-

struction of such a method, briefly state its main

convergence properties and display numerical experi-
ments confirming them.

2. The main results

2.1. The idea of the method

The idea of the method is as follows. Given a diver-
gence-free velocity field w we compute the solution (�, u,
p) of the Oseen equations, namely,

� ¼ �ru; �r � �þ ðw � rÞuþrp ¼ f;

r � u ¼ 0 in � ð1Þ

We take homogeneous Dirichlet boundary conditions

for simplicity.
Let us denote u by T(w). Then we set w := T(w) and

repeat the process until convergence, that is, until w =

T(w) = u. In this case, (�, u, p) is nothing but the
solution of the steady state incompressible Navier-
Stokes equations.

2.2. The DG method

The DG method mimics this approach. Thus, given

an exactly divergence-free velocity field w, we devise an
optimally convergent, locally conservative DG method
for the Oseen equations. Such a DG method provides an

approximation to (�, u, p) in the space �h � Vh � Qh

where

*Tel.: +1 (604) 822 4346; Fax: +1 (604) 822 6074;

E-mail: schoetzau@math.ubc.ca

837

# 2005 Elsevier Ltd. All rights reserved.

Computational Fluid and Solid Mechanics 2005

K.J. Bathe (Editor)



�h ¼ fv 2 L2ð�Þ2�2 : � Kj 2 PkðKÞ2�2; K 2 T hg

Vh ¼ fv 2 L2ð�Þ2 : v Kj 2 PkðKÞ2; K 2 T hg
Qh ¼ fq 2 L2ð�Þ : q Kj 2 Pk�1ðKÞ; K 2 T h;Z

�

q dx ¼ 0g

for an approximation order k � 1. Here, Pk(K) denotes
the space of polynomials of degree at most k. We define

the approximate solution (�h, u, ph) 2 �h � Vh � Qh by
requesting that for each K 2 T h,Z
K

�h : � dx ¼ ��
Z
K

uh � r � � dxþ �
Z
@K

û�h � � � nK ds

Z
K

½�h : rv� phr � v� dx�
Z
@K

½�̂h : ðv� nKÞ � p̂hv � nK� ds

�
Z
K

uh � r � ðv� wÞ dxþ
Z
@K

w � nKûwh � v ds ¼
Z
K

f � v dx

and

�
Z
K

uh � rq dxþ
Z
@K

û
p
h � nKq ds ¼ 0 ð2Þ

for all test functions (� , v, q) 2 �h � Vh � Qh. Each of
the above equations is enforced locally, that is, element-

by-element, due to the appearance of the so-called
numerical fluxes û�h ; �̂h; p̂h; û

w
h and û

p
h. This DG method is

both locally conservative as well as energy-stable. See [4]

for details.
To be able to iterate as we did for the continuous

problem, the crucial point is how to obtain a new exactly
divergence-free velocity w from the completely dis-

continuous approximations provided by the DG
method. This is done by taking w := Puh, where P is a
post-processing operator defined element-by-element by

Pu Kj ¼ PK u K;j ûpð Þ; K 2 T h

where û
p is the numerical flux related to the incom-

pressibility constraint. For example, if the elements K
are triangles, the local operator PK is defined byZ
e

PKu � nK’ ds ¼
Z
e

ûp � nK’ ds 8’ 2 PkðeÞ;
for any edge e � @KZ

K

PKu � r’ dx ¼
Z
K

u � r’ dx 8’ 2 Pk�1ðKÞZ
K

PKu �� dx ¼
Z
K

u �� dx 8� 2 �kðKÞ

where

�kðKÞ ¼ f� 2 L2ðKÞ2 : DF t
K� � FK 2 �kðK̂Þg

Here, FK: K̂ ! K denotes the elemental mapping and

DFK its Jacobian. On the reference triangle K̂ =
{(x̂1,x̂2) : x̂1 > 0, x̂1 + x̂2 < 1}, the space �k (K̂) is

defined by

�kðK̂Þ ¼ f� 2 PkðK̂Þ2 : r �� ¼ 0 in K̂; � � nK̂ ¼ 0 on @K̂g

The post-processing operator P is well-defined and
yields an exactly divergence-free approximation given

that uh 2 Vh satisfies Eq. (2).

2.3. The convergence results

This iteration has been proven to converge linearly to
an approximation of the incompressible Navier-Stokes
equations. Moreover, the corresponding solution, whose

velocity is exactly incompressible, converges with opti-
mal rates to the exact solution as the mesh-size
parameter tends to zero [1].

2.4. Numerical results

We present numerical experiments extracted from [1].
They show that the theoretical rates of convergence are
sharp and that the approximate velocity is exactly
incompressible. We consider the Kovasznay flow; see [5].

In Table 1 we show the errors and convergence rates
in p, u and � obtained for � = 0.1. The errors in p and �
are measured in the L2-norm while u � uh and u � Puh
are evaluated in the classical norm k�k1,h. We observe the

Table 1

Errors and orders of convergence for � = 0.1

L kp � phk0 ku � uhk1,h ku � Puhk1,h ��1k� � �hk0

3 2.2e+0 – 1.2e+1 – 8.1e+0 – 7.0e�0 –

4 1.0e+0 1.12 5.4e+0 1.11 3.2e+0 1.33 3.4e�0 1.05

5 4.8e�1 1.10 2.4e+0 1.16 1.4e+0 1.18 1.6e�0 1.07

6 2.3e�1 1.04 1.1e+0 1.18 6.8e�1 1.06 7.8e�1 1.04

7 1.2e�1 1.01 4.7e�1 1.17 3.4e�1 1.02 3.9e�1 1.02

8 5.8e�2 1.00 2.2e�1 1.13 1.7e�1 1.01 1.9e�1 1.02

Table 2

L2-errors and orders of convergence in the velocity and L1-

norm of the divergence of the post-processed solution Puh for

� = 0.1

L ku � uhk0 ku � Puhk0 kH � Puhk1
3 6.4e�1 – 4.9e�1 – 1.4e�12
4 1.6e�1 2.03 1.1e�1 2.22 1.4e�12
5 3.3e�2 2.22 2.0e�2 2.37 3.2e�12
6 7.1e�3 2.24 4.2e�3 2.27 1.5e�11
7 1.6e�3 2.19 9.8e�4 2.12 1.8e�12
8 3.5e�4 2.13 2.4e�4 2.04 2.9e�11
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predicted first-order convergence for all the error com-
ponents, in full agreement with the theory.

In Table 2, we display the L2-errors in the velocities
and their corresponding convergence orders. In the first
column, we observe that the velocities converge with

second order. In the second column, we notice that by
post-processing the error is reduced by a factor of
roughly 3/2. Therefore, the post-processed solution

should be used as the best approximation obtained by
our scheme. Furthermore, we show the L1-norms of the
divergence of Puh (evaluated at the points of a 4-by-4
Gauss formula on each cell). These are of the order of

the residual of the non-linear iteration, confirming that
the post-processed solution is indeed divergence-free.

3. Concluding remarks

We have shown that, by using DG methods, it is
possible to obtain exactly divergence-free approxima-
tions of the velocity of the incompressible Navier-Stokes

equations. This holds for any polynomial approximation
of degree k � 1. No other finite element method has this
capability.

Although the results discussed here have been done in
two space dimensions and for triangles, they can be

easily extended to other elements, to the three dimen-
sional case and to other incompressible flows.
Extensions of the approach to the Maxwell equations

constitute the subject of ongoing work.
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