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Abstract

The critical Rayleigh number Racr of the Hopf bifurcation that signals the limit of steady flows in a differentially

heated 8:1:1 cavity is computed. The two-dimensional analog of this problem was the subject of a comprehensive set of
benchmark calculations that included the estimation of Racr [1]. In this work we begin to answer the question of
whether the 2D results carry over into 3D models. For the case of the 2D model being extruded for a depth of 1, and no-

slip/no-penetration and adiabatic boundary conditions placed at these walls, the steady flow and destabilizing eigen-
vectors qualitatively match those from the 2D model. A mesh resolution study extending to a 20-million unknown
model shows that the presence of these walls delays the first critical Rayleigh number from 3.06 	 105 to 5.13 	 105.
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1. Introduction

The flow in an 8:1 thermally driven cavity was the
subject of a comprehensive set of benchmark calcula-
tions. At the First MIT Conference on Fluid and Solid

Mechanics, 23 contributors presented results for this
problem using a variety of numerical methods, as sum-
marized in Christon et al. [1]. Many of these calculations

have been formally presented in a special issue of the
International Journal for Numerical Methods in Fluids,
which begins with that article. Part of the challenge was

to estimate the location of the Hopf bifurcation sig-
nifying the boundary between steady and time-
dependent flow solutions. The critical Rayleigh number

of this bifurcation was located to very high accuracy by
Xin et al. [2] and verified by our group [3]. The deli-
neation in parameter space between steady and unsteady
flows was particularly relevant for this problem, since

the benchmark was drawn from an application where
time-dependent flows would cause unpredictable dis-
tortion of a laser passing through the fluid.

This work begins to extend the model to three

dimensions, by considering an 8:1:1 cavity where the 2D
system has been extruded by a depth of 1.0. No-slip/no-
penetration and adiabatic conditions are put on the
front and back surfaces. There are three purposes to

analyzing the 3D model: to ascertain whether the system
loses stability to 3D modes before the 2D mode, to
improve on the model for this specific laser application,

and to provide a challenging benchmark for 3D flow
stability calculations.

2. Problem formulation and solution methods

The detailed description of the 2D problem is con-
tained in Christon et al. [1]. The incompressible Navier-

Stokes equations with the Boussinesq approximation
along with the continuity and heat equations model the
flow in a closed cavity, which is 8 units high and 1 unit

wide. There are no-slip/no-penetration boundary con-
ditions around the entire domain, and one side is held at
a constant hot temperature and the other side at a cooler
temperature. The fluid has a Prandtl number of Pr =

0.71, leaving just the Rayleigh number as the free
parameter. The definitions of the Rayleigh number (Ra),
Prandtl number, and the characteristic time scale are all

defined in Christon et al. [1].
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In this work, the same model is extruded for a depth
of D = 1, with no-slip/no-penetration and adiabatic

boundary conditions added on these surfaces. The
addition of no-slip boundary conditions assures that
there will be variation in the solution in the third

dimension.
The numerical methods for the PDE discretization,

steady solution, and eigenvalue approximation that are

used in this work have been previously presented [3,4,5],
and involve the MPSalsa, Aztec, LOCA, and ARPACK
codes. A hexahedral finite element discretization with
trilinear basis functions is used to represent all five

variables (u, v, w, P, T) and a pressure stabilization term
is added to the Galerkin residual for the continuity
equation. A structured mesh was used with grading of

the elements towards all surfaces to capture the flow
boundary layers. Upwinding (e.g. SUPG) was not used
in these calculations. A static partitioner was used to

spread the domain and work load over a distributed
memory parallel computer. A fully coupled Newton
method with an analytic Jacobian was used to reach

steady-state solutions, and continuation methods were
used on the coarsest mesh to reach the elevated values of
Ra. The solutions were interpolated from each mesh to
the next finest, which provided an adequate initial guess

for Newton’s method to reconverge on the finer mesh.
The linear system is solved using a parallel domain

decomposition ILU preconditioners and a GMRES

solver. A generalized Cayley transformation is used to
transform the eigenvalue problem so that the rightmost
eigenvalues will be among the first to converge within

the interative Arnoldi procedure. The Cayley parameters
were set at values near � = �
 = 1.3, and 140 Arnoldi
iterations were performed without restarts. The Hopf
bifurcations were identified by a change in sign of the

real part of the rightmost eigenvalues, and the critical
Rayleigh number was computed by linear interpolation
between two steps in Ra that straddle the bifurcation.

The Hopf tracking algorithm in the LOCA library that
has been used to directly locate the Hopf point in our 2D
calculations [3] was not used because the memory

requirement of that algorithm was too large for the
problem sizes and available computational resources.

2.1. Stability results for the 8:1:1 cavity

On each of several meshes, the first Hopf bifurcation
was located by repeatedly choosing the Rayleigh num-
ber, computing a steady solution, and then calculating
the leading eigenvalues. Since the real part of the leading

eigenvalue, Real(�), was found to vary nearly linearly
with Ra, only a few solves were needed to closely bracket
the Hopf bifurcation. The approximated eigenspectrum

near the Hopf bifurcation (Ra= 5.15 	 105 on the finest

mesh) is shown in Fig. 1. It can be seen that two modes

are on the verge of bifurcating at this point.
Visualization of the solution and real part of the

destabilizing eigenvector are shown in Fig. 2. Visual

comparison of these solutions with those for the 2D
problem (e.g. Fig. 2 in Salinger et al. [3]) shows that the
flow and eigenmode are closely related to those for the
2D problem. While the number of vortices in the

eigenvector may not be exactly the same, it appears to be
the same phenomena that destabilizes both the 2D
model and this 3D model.

The leading critical Rayleigh number was identified
for a series of meshes, ranging from 330 thousand to
over 20 million unknowns. The finest mesh consisted of

a 320 	 128 	 96 discretization in the height, width, and
depth respectively. All meshes preserved this element
ratio between the spatial dimensions. Table 1 shows the
results of these calculations, reporting the leading two

critical Rayleigh numbers and the frequencies ! at the
Hopf bifurcations, along with the CPU time required to
perform an eigenvalue calculation at these conditions.

(The computer contains 3.06GHz Intel Xenon pro-
cessors with 2Gb of memory for each 2-processor node.)
Note that the gap between the first and second critical

Rayleigh numbers has almost disappeared on the finest
mesh.
By assuming the order h2 convergence of the critical

Fig. 1. Part of the eigenspectrum is shown in the vicinity of two

Hopf bifurcations, for Ra = 5.15 	 105 on the 20-million

unknown mesh. Note that the x-axis has been stretched by a

factor of 20 since these eigenvalues identified after use of the

Cayley transformation are all near the imaginary axis. Only the

four rightmost pairs of eigenvalues are converged to several

digits.
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Rayleigh number that we have seen in previous com-
putations [3,4], we have extrapolated the results to
estimate the true solution of the PDEs. The results of

these extrapolations are shown in the final row of

Table 1. One interesting result is that the extrapolation
predicts that the second critical Rayleigh number over-

takes the first (5.134 � 105 vs. 5.137 � 105). A plot of the
first critical Rayleigh number with respect to mesh
spacing h is shown in Fig. 3 along with the quadratic

extrapolation as h ! 0. For these calculations, we
defined the mesh spacing h = (Nn)

�1/3 for number of
nodes Nn. (The data for the second critical Rayleigh
number nearly falls on top of this data, and is not

shown.) As can be seen on this plot, there are not
enough data points that fall on the quadratic fit to
conclusively predict the critical Rayleigh number to four

decimal points, or even to conclusively say whether the
mode with the higher or lower frequency bifurcates first
in the limit of h! 0. It is expected that both bifurcations

occur in the range of 5.13 � 0.03 � 105.

Fig. 2. Streamlines are shown for the steady flow (left) and the

destabilizing eigenvector (right) near the instability.

Fig. 3. The critical Rayleigh number Racr calculated on five

successively refined meshes is plotted versus mesh spacing h.

Extrapolation assuming quadratic convergence gives a predic-

tion of the true Racr for the PDEs.

Table 1

The results of the mesh convergence study showing the dependence of the first two critical Rayleigh numbers on mesh are shown. The

columns represent number of unknowns in the mesh, the values of Racr and the frequency for each of the first two Hopf bifurcations,

and the number of CPU hours (and number of processors) used to approximate the eigenvalues on this mesh

Unknowns Racr
(1) !(1) Racr

(2) !(2) CPU hrs (Procs)

0.334M 6.457 � 105 1.359 – – 0.5 (20)

1.097M 5.563 � 105 1.372 5.630 � 105 1.493 1.0 (40)

2.564M 5.361 � 105 1.377 5.379 � 105 1.498 2.1 (64)

4.966M 5.277 � 105 1.378 5.283 � 105 1.500 4.4 (80)

20.083M 5.192 � 105 1.379 5.193 � 105 1.501 16.0 (240)

1 5.137 � 105 1.380 5.134 � 105 1.502 (Extrapolation)
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One final calculation was performed to aid in extra-
polating these results to other box depths D. Table 2

shows the results of recalculating the critical Rayleigh
number at D = 0.999, and the finite difference
approximation of dRacr=dD at D = 1. Since the 2D

calculations represent the D ! 1 result, we have
enough data to set the parameters in a power law fit to
the Racr(D) function.

Racr ¼ 3:06	 105 þ 2:07	 105ðDÞ�n ð1Þ

where the derivative result leads to an estimate near n =

5. More data is needed to see if this correlation has any
merit.

3. Conclusions

A linear stability analysis has been performed on the

flow in a differentially heated 8:1:1 cavity, and compared
to the results of 2D calculations. It is found that the flow
and destabilizing eigenmode remain qualitatively the

same in the 3D case. The addition of the no-slip walls in
the third dimension have a stabilizing effect on the flow,
delaying the critical Rayleigh number from 3.06 	 105

for the 2D case to near 5.13 	 105 for the 3D case. Our
calculations show that the first two critical Rayleigh
numbers, corresponding to two Hopf bifurcations, occur
at nearly the same point. It is not clear from our

calculations which one would bifurcate first as the mesh
spacing was dropped to zero.

The estimation of the critical Rayleigh number for
this system involved a mesh resolution study that
included eigenvalue approximations for a system of over

20 million unknowns, which is the largest ever per-
formed by this research group.
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[2] Xin S, Le Quéré P. An extended Chebyshev pseudo-

spectral benchmark for the 8:1 differentially heated cavity.

Int J Numer Methods Fluids 2002;40:981–998.

[3] Salinger AG, Lehoucq RB, Pawlowski RP, Shadid JN.

Computational bifurcation and stability studies of the 8:1

cavity problem. Int J Numer Methods Fluids

2002;40:1059–1073.

[4] Lehoucq RB, Salinger AG. Large-scale eigenvalue calcu-

lations for stability analysis of steady flows on massively

parallel computers. Int J Numer Methods Fluids

2001;36:309–327.

[5] Shadid JN. A fully-coupled Newton-Krylov solution

method for parallel unstructured finite element fluid flow,

heat and mass transport. IJCFD 1999;12:199–211.

Table 2

The sensitivity of Racr and ! on the depth of the cavity is

estimated by finite differencing the results at D = 1.0 with that

at D = 0.999 for the 2.564M unknown mesh

Box depth (D) Racr ! dRacr
dD

d!
dD

1.0 5.3609 	 105 1.37669

0.999 5.3705 	 105 1.37656 �1.04 	 106 0.13
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