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Abstract

Higher-order Navier–Stokes algorithms are the need of the times to harness emerging computing power. The Taylor
Weak Statement (TWS) modified conservation law approach, coupled with higher-degree-basis finite element imple-

mentation, is a unique way to accomplish this goal. The TWS approach to improved accuracy conservation law
algorithm solutions is presented.
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1. Introduction

The Galerkin weak statement applied to Navier–

Stokes (NS) conservation law systems is intrinsically
unstable for large Reynolds number applications. Per-
haps the most common resolution has been to alter the

test space, and hence switch to a non-Galerkin weak
form, to introduce numerical diffusion to stabilize the
solution process. One must be extremely careful here,

however, as this can lead to a change in the physics of
the problem itself by reducing the effective Reynolds
number of the simulation. An alternative very systematic
approach to generation of stable and accurate algo-

rithms, termed the Taylor Weak Statement (TWS)
process is presented herein.

2. Problem statement

2.1. TWS background

Donea [1] pioneered the original Taylor-Galerkin

algorithm and applied it to convective transport pro-
blems. Baker et al. [2] generalized the concept in
developing the TWS-modified hyperbolic conservation

law process and documented improved performance
over GWS algorithm solutions. Chaffin et al. [3] applied

TWS to incompressible Navier-Stokes (INS) systems via
a linear FE basis implementation. Kolesnikov et al. [4]
generalized it for the steady INS system generating an

improved accuracy linear basis algorithm. TWS-cate-
gorizes reported CFD algorithms as organized via
choices for available parameters [2] in Table 1.

Current research focus is on higher-degree finite ele-
ment basis implementations of TWS for unsteady INS.
The Taylor series analysis framework yields a modified

continuum restatement of the Navier-Stokes conserva-
tion law system yielding the opportunity for decisive
analysis on optimal parameter selection. This approach
results in a genuine Galerkin weak statement, i.e. the

error is orthogonal to the trial space.

2.2. Theoretical analysis

The INS conservation law statement is
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The Taylor series modified INS statement, Eq. (1),

with �, �, �, and 
 arbitrary parameters is
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where � is the (constant) density, p is the pressure, bi is
the body force, �ij is the Stokes stress tensor, and ui is

the velocity vector. Solutions to Eq. (3) are para-
meterized by the Reynolds number, Re, which is of
order Re � 104 for practical problem statements.
Hence, theoretical attention is focused on the pure

advection limiting form Re�1!0 of Eq. (3). In one
dimension, the associated modified transport equation
for generic variable q(x,t) is
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The resultant TWS algorithm solution amplification
factor for linear basis implementation is

Gh ¼
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Where � and C are an implicit parameter and the

cournant number, respectively. Attention is focused on
the impact of the � parameter on the phase accuracy of
the TWS algorithm solution. The reduced form is
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with the associated linear basis amplification factor

Gh ¼ ð2þ �C
2Þ þ cos �ð1� �C2Þ � i sin �ð3ð1� �ÞCÞ

ð2þ �C2Þ þ cos � ð1� �C2Þ þ i sin �ð3�CÞ
ð7Þ

Equation (7) clearly indicates that Gh is the ratio of
complex conjugates only for � = 1

2. Then, the amplifi-
cation factor magnitude is unity for all �, i.e. no artificial

dissipation is present. The associated phase velocity is

�h ¼ 1

��C tan�1
=ðGhÞ
<ðGhÞ

 !
ð8Þ

from which relative phase propagation error distribu-
tion for the wave numbers 0 � � �  can be

determined.
Determining existence of optimal � involves writing a

Taylor expansion of Gh, and comparing to the analytical

amplification factor, G = exp(�i�C), as a function of
wave number. The process can be repeated for TWS
algorithm implementation using quadratic and cubic FE

bases.

3. Discussion and results

A TWS algorithm solution for Eq. (6) is time accu-
rate, so the parametric study involves the Courant
number (C = u��t/�x) and �. The results show an
interesting interdependence between C and �. For a

smooth initial condition, the quadratic FE basis TWS
solution is stable for a range of � but becomes imme-
diately unstable when the range is exceeded. The

stability range, hence the optimal � parameter, appears

Table 1

TWS algorithm categorization of reported CFD algorithms [1]

Algorithm name � � � � 


TWSh + �TS all arbitrary arbitrary arbitrary arbitrary

(Bubnov)GWSh all 0 0 0 0

Donor cell FD 0 0 1 0 0

Lax-Wendroff FD 0 0 sgn(u) 0 0

Euler Taylor GWSh 0 0 1 1 0

CN Taylor GWSh 0.5 0 0.5 1 0

Euler Char. GWSh 0 0 1 0 1

Swansea Taylor GWSh 0 0 1 0 0

Wahlbin 0 sgn(u) 2sgn(u) 0 0

Dendy 0 �x�sgn(u) �x�sgn(u) 0 0

Raynond-Garder 0.5 sgn(u)/v� sgn(u)/vo 0 0

Hughes SUPG – 0 sgn(u) 0 0

Euler Petrov GWSh 0 0 0 (1 � v) 0

CN Petrov GWSh 0.5 sgn(u) v�sgn(u) �v/2 0

Warmin-Beam FD 0 0 1 0 �3(1 � C)

VanLeer MUSCL 1 0 sgn(u) 0 �3
Jiang Least Squares all 2� 2� 0 0

Note sgn(u) is the sign of u, v� = 1/
ffiffiffiffiffi
15
p

, C � v � 1
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unique for linear, quadratic and cubic FE bases. For
example, assembling TWS algorithm at generic node ‘j’,
for C = 1 and using the linear basis FE implementation

produces the recursion relation

Qj þQjþ1
	 


nþ1¼ Qj þQj�1
	 


n
ð9Þ

which confirms that all nodal data are propagated
exactly. Table 2 summarizes basis-degree dependent

‘optimal’ � as a function of C as determined numerically.
Figures 1 and 2 graph the time evolution of the k = 1

basis GWS and TWS solutions for C = 0.5. The optimal

solution results for � = �0.6. Figures 3 and 4 compare
the time evolution of the k = 2 basis GWS and TWS

Table 2

Optimal � for C and FE basis degree, k

Basis degree C = 0.25 C = 0.5 C = 1.0

k = 1 �0.7 �0.6 �0.5
k = 2 – �0.4 �0.4
k = 3 – �0.25 �0.33

Fig. 1. Unsteady scalar field transport, GWS, C = 0.5, � =

0.5, k = 1, M = 40.

Fig. 2. Unsteady scalar field transport, TWS, C = 0.5, �= 0.5,

k = 1, � = �0.6, M = 40.

Fig. 3. Unsteady scalar field transport, GWS, C = 0.5, � =

0.5, k = 2, M = 40.

Fig. 4. Unsteady scalar field transport, TWS, C = 0.5, �= 0.5,

k = 2, � = �0.4, M = 40.
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solutions for C = 0.5. Now the optimal solution results
for � = �0.4. Figures 5 and 6 compare the time evo-

lution of TWS solutions for C = 1, for k = 1 and 2
bases respectively. The optimal � is �0.5 and �0.4,
respectively, and interestingly the singular C = 1, k = 1

basis solution is more phase accurate than the k = 2
solution.

4. Conclusions

The INS TWS-modified conservation law form is

summarized, indicating the subsequent Fourier modal
analysis for performance comparisons. Improved phase
accurate results are verified for a simple 1D problem.

TWS theory provides a theoretical framework for
potential improvement of CFD algorithms in n-dimen-
sions via select order FE basis implementations on

arbitrary meshes.
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Fig. 5. Unsteady scalar field transport, TWS, C = 1.0, �= 0.5,

k = 1, � = �0.5, M = 40.

Fig. 6. Unsteady scalar field transport, TWS, C = 1.0, �= 0.5,

k = 2, � = �0.4, M = 40.
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