824

A modified conservation law approach to improved finite element
incompressible Navier—Stokes algorithms

Sunil Sahu®*, A.J. Baker®

“CFD Laboratory, University of Tennessee, TN, 37996, USA
hEngineering Science, University of Tennessee, TN, 37996, USA

Abstract

Higher-order Navier—Stokes algorithms are the need of the times to harness emerging computing power. The Taylor
Weak Statement (TWS) modified conservation law approach, coupled with higher-degree-basis finite element imple-
mentation, is a unique way to accomplish this goal. The TWS approach to improved accuracy conservation law

algorithm solutions is presented.
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1. Introduction

The Galerkin weak statement applied to Navier—
Stokes (NS) conservation law systems is intrinsically
unstable for large Reynolds number applications. Per-
haps the most common resolution has been to alter the
test space, and hence switch to a non-Galerkin weak
form, to introduce numerical diffusion to stabilize the
solution process. One must be extremely careful here,
however, as this can lead to a change in the physics of
the problem itself by reducing the effective Reynolds
number of the simulation. An alternative very systematic
approach to generation of stable and accurate algo-
rithms, termed the Taylor Weak Statement (TWS)
process is presented herein.

2. Problem statement
2.1. TWS background

Donea [1] pioneered the original Taylor-Galerkin
algorithm and applied it to convective transport pro-
blems. Baker et al. [2] generalized the concept in
developing the TWS-modified hyperbolic conservation
law process and documented improved performance
over GWS algorithm solutions. Chaffin et al. [3] applied
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TWS to incompressible Navier-Stokes (INS) systems via
a linear FE basis implementation. Kolesnikov et al. [4]
generalized it for the steady INS system generating an
improved accuracy linear basis algorithm. TWS-cate-
gorizes reported CFD algorithms as organized via
choices for available parameters [2] in Table 1.

Current research focus is on higher-degree finite ele-
ment basis implementations of TWS for unsteady INS.
The Taylor series analysis framework yields a modified
continuum restatement of the Navier-Stokes conserva-
tion law system yielding the opportunity for decisive
analysis on optimal parameter selection. This approach
results in a genuine Galerkin weak statement, i.e. the
error is orthogonal to the trial space.

2.2. Theoretical analysis

The INS conservation law statement is
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The Taylor series modified INS statement, Eq. (1),
with «, (3, v, and p arbitrary parameters is
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Table 1
TWS algorithm categorization of reported CFD algorithms [1]
Algorithm name 0 @ 8 5 I
TWS" + 0TS all arbitrary arbitrary arbitrary arbitrary
(Bubnov)GWS" all 0 0 0 0
Donor cell FD 0 0 1 0 0
Lax-Wendroff FD 0 0 sgn(u) 0 0
Euler Taylor GWS”" 0 0 1 1 0
CN Taylor GWS" 0.5 0 0.5 1 0
Euler Char. GWS" 0 0 1 0 1
Swansea Taylor GWS" 0 0 1 0 0
Wahlbin 0 sgn(u) 2sgn(u) 0 0
Dendy 0 Ax-sgn(u) Ax-sgn(u) 0 0
Raynond-Garder 0.5 sgn(u)/v, sgn(u)/v, 0 0
Hughes SUPG - 0 sgn(u) 0 0
Euler Petrov GWS” 0 0 0 (1-=v) 0
CN Petrov GWS" 0.5 sgn(u) v-sgn(u) —v/2 0
Warmin-Beam FD 0 0 1 0 =31 -0
VanLeer MUSCL 1 0 sgn(u) 0 -3
Jiang Least Squares all 26 20 0 0
Note sgn(u) is the sign of u, v, = 1/3/15,C <v <1
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where p is the (constant) density, p is the pressure, b; is
the body force, oj; is the Stokes stress tensor, and u; is
the velocity vector. Solutions to Eq. (3) are para-
meterized by the Reynolds number, Re, which is of
order Re > 10* for practical problem statements.
Hence, theoretical attention is focused on the pure
advection limiting form Re™'—0 of Eq. (3). In one
dimension, the associated modified transport equation
for generic variable q(x,t) is
aq dq Atd (
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The resultant TWS algorithm solution amplification
factor for linear basis implementation is
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Where 6 and C are an implicit parameter and the
cournant number, respectively. Attention is focused on

the impact of the v parameter on the phase accuracy of
the TWS algorithm solution. The reduced form is
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with the associated linear basis amplification factor

()

Equation (7) clearly indicates that G" is the ratio of
complex conjugates only for 8 = % Then, the amplifi-
cation factor magnitude is unity for all ~, i.e. no artificial
dissipation is present. The associated phase velocity is

" = IC'[an‘I <%(Gh)> (8)

from which relative phase propagation error distribu-
tion for the wave numbers 0 < o < 7 can be
determined.

Determining existence of optimal « involves writing a
Taylor expansion of G", and comparing to the analytical
amplification factor, G = exp(—icC), as a function of
wave number. The process can be repeated for TWS
algorithm implementation using quadratic and cubic FE
bases.

3. Discussion and results

A TWS algorithm solution for Eq. (6) is time accu-
rate, so the parametric study involves the Courant
number (C = u-At/Ax) and . The results show an
interesting interdependence between C and . For a
smooth initial condition, the quadratic FE basis TWS
solution is stable for a range of v but becomes imme-
diately unstable when the range is exceeded. The
stability range, hence the optimal v parameter, appears
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Table 2
Optimal ~ for C and FE basis degree, k

Basis degree C =025 C=05 C=10
k=1 -0.7 —0.6 -0.5
k=2 - —-0.4 —-0.4
k=3 - —0.25 —0.33
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Fig. 1. Unsteady scalar field transport, GWS, C = 0.5, § =
0.5,k =1,M = 40.
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Fig. 2. Unsteady scalar field transport, TWS, C = 0.5,0 = 0.5,
k=1~= -0.6,M = 40.
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Fig. 3. Unsteady scalar field transport, GWS, C = 0.5, 0
0.5,k =2, M = 40.
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Fig. 4. Unsteady scalar field transport, TWS, C = 0.5, 0 = 0.5,
k=2+v=-04M = 40.

unique for linear, quadratic and cubic FE bases. For
example, assembling TWS algorithm at generic node j°,
for C = 1 and using the linear basis FE implementation
produces the recursion relation

(Q+Qit1),,,= (Q +Q-1), 9)

which confirms that all nodal data are propagated
exactly. Table 2 summarizes basis-degree dependent
‘optimal’ vy as a function of C as determined numerically.

Figures 1 and 2 graph the time evolution of the k = 1
basis GWS and TWS solutions for C = 0.5. The optimal
solution results for v = —0.6. Figures 3 and 4 compare
the time evolution of the k = 2 basis GWS and TWS
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Fig. 5. Unsteady scalar field transport, TWS, C = 1.0, 0 = 0.5,
k=1v=-05M = 40.
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Fig. 6. Unsteady scalar field transport, TWS, C = 1.0, 0 = 0.5,
k=2~v=-04 M = 40.

solutions for C = 0.5. Now the optimal solution results
for v = —0.4. Figures 5 and 6 compare the time evo-
lution of TWS solutions for C = 1, for k = 1 and 2
bases respectively. The optimal v is —0.5 and —0.4,
respectively, and interestingly the singular C = 1,k = 1
basis solution is more phase accurate than the k = 2
solution.

4. Conclusions

The INS TWS-modified conservation law form is
summarized, indicating the subsequent Fourier modal
analysis for performance comparisons. Improved phase
accurate results are verified for a simple 1D problem.
TWS theory provides a theoretical framework for
potential improvement of CFD algorithms in n-dimen-
sions via select order FE basis implementations on
arbitrary meshes.
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