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Abstract

A hybrid large-eddy simulation/filtered-density function (LES-FDF) scheme is devised and implemented for the
simulation of turbulent reactive flows. A robust validation criteria is specified in terms of the moments of the FDF

transport equation. By using redundant quantities in the different components of the hybrid-solver, a consistency
condition is specified. For the current joint-composition FDF-based method, the density field is used as the redundant
field. The consistency criteria is tested using a complex bluff-body stabilized flame.
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1. Introduction

Simulation of turbulent reactive flows is a complex
and challenging problem with widespread practical use.
Recent breakthroughs in algorithmic techniques and the

drastic increase in computing power have provided us
with the tools to understand the complex interaction
between turbulence and chemical reaction. In the past

decade, use of the large-eddy simulation (LES) techni-
que has made it possible to make accurate predictions of
turbulent flow even for complex configurations. On the

other hand, treatment of combustion is mainly through
simple closures and pre-existing models from the Rey-
nolds-averaged Navier–Stokes methods (RANS) such as
flamelet models or conditional moment closure type

approximations. Although these assumptions work well
for systems that exhibit little or no extinction, a higher-
dimensional multi-scalar model is required to describe

slow and extinction chemistry. The transported-filtered
density function (FDF) [1] method provides a natural
starting point for such detailed description. The FDF

technique has the key advantage that the reaction source
term of the scalars appears closed and requires no
modeling.

Though a joint velocity-composition FDF transport
equation can be formulated, numerical implementations
of this high-dimensional system pose stability and fea-
sibility issues. To overcome this problem, a hybrid

approach is used where the velocity and turbulence fields
are solved using an Eulerian scheme (like RANS or

LES) while the scalar transport is handled using the
FDF approach. Although the FDF technique has been
widely used in the RANS context, almost all the appli-

cations involve steady-state flows. Since the LES
technique is inherently transient, the coupled LES-PDF
method needs to maintain temporal accuracy. Due to

the statistical nature of the FDF scheme, such a coupled
scheme poses numerical accuracy issues. This article
details a stable, robust and accurate formulation of the

hybrid approach.

2. Hybrid LES-FDF scheme

In the hybrid scheme implemented here, the LES

technique is based on a low-Mach number approxima-
tion-based finite-volume scheme. Further details of the
LES implementation can be found elsewhere [2]. The

Lagrangian method uses stochastic particles to evolve
the FDF.
The particle method is obtained from the fundamental

FDF transport equation. The FDF in a variable density

flow can be defined as

FLð ; x; tÞ ¼
Z þ1
�1

� ðy; tÞ � ½ ;� ðy; tÞ� G ðy� xÞ dy

ð1Þ
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where � is a N-dimensional delta function for a N-species
system and  is the random variable in the composition

domain. The FDF definition yields the following
property:Z þ1
�1

FLd ¼
Z þ1
�1

� ðy; tÞ G ðy� xÞ dy ¼ �� ð3Þ

Similarly, the filtered mean of any scalar Q� can be
defined as

eQ� ¼
Z þ1
�1

Q�ð ; y; tÞFLd ¼
1

��

Z þ1
�1

� ðy; tÞ Q�ðy; tÞ

G ðy� xÞ dy ð4Þ

Using these definitions, the transport equation for the

joint composition FDF can be written as [1,3]
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where ~u is the filtered velocity field, gu0  j is the sub-filter

velocity fluctuation conditioned on the scalar,
r � �Dr�  j is the conditional micromixing term, and
S is the reaction source term. The conditional velocity

term is modeled using the gradient-diffusion hypothesis
to give

gu0i  j FL ¼ � ��DT
@FL=�

@xi
ð6Þ

The conditional mixing term is closed using the Inter-

action-by-Exchange-with-the-Mean (IEM) model [4]:

r � �Dr�  j ¼ r � ��Dr ~� � ��C�

	
 � ~�
	 


ð7Þ

where C� is scalar-to-mechanical time-scale ratio and 	
is a turbulence time scale. In the present study we set C�
to be 2 [5] and use a turbulent-diffusivity-based time
scale [1].

The high dimensionality of the FDF equation makes
finite-differencing-based solution techniques infeasible.
A stochastic approach [6] is used where the filtered

momentum equations are solved using conventional
grid-based techniques (like LES) while the FDF equa-
tion is solved using a particle-based Monte-Carlo
approach. The Lagrangian system uses the filtered fields

from the LES solver to advance the notional particles.
Using the particle properties, mean fields are con-
structed that is fed back to the LES solver. The LES

solver then advances the flow using these mean fields.
Typically, the Lagrangian system provides the filtered
density field that is then used by the LES solver.

To increase statistical accuracy, large particle

numbers are needed making such methods computa-
tionally expensive. Numerical implementation of the

LES-FDF scheme is an algorithmic challenge and novel
techniques are used to reduce the computational expense
of these schemes [7]. A major issue in such imple-

mentations is to consistently couple a stochastic FDF
scheme and a deterministic Eulerian scheme. Although
steady-state-based flow solvers have been successfully

used [8], a consistent algorithm for a temporally variant
system (like the LES-based approach) has not been
studied in detail so far. Here we propose a criteria for a
consistent implementation and test it with a challenging

reacting flow problem.

3. Consistency requirements

In the Lagrangian particle-based system, the compu-
tational domain is decomposed into a large number of
notional particles that represent the fluid. The particles

are initially distributed uniformly and evolve in space
and time using stochastic differential equations [6]. Each
particle carries information about its location, a com-
position vector and a representative weight. In order to

pass information from and to the LES solver, particle
mean fields are obtained by a weighted summation
process involving particle properties in a given compu-

tational cell. The particle weight is initially assigned to
be the local fluid mass such that the sum of the particle
weights in a computational cell equals the cell fluid mass:

wk ¼
Vi ��i
Np

ð8Þ

where wk is the particle weight, Vi is the cell volume,
��i is the fluid density in cell i, and Np is the number of
particles in the cell. At any time step, the particle-

weights-based density can be obtained by using the sum
of particle weights in a given cell:

��w ¼
1

Vi

XNp

i¼1
wk ð9Þ

In addition to the particle weight, a mean density can

also be obtained from the particle composition vector
based on thermochemical properties:

��p ¼
PNp

k¼1 wk=�ð�kÞPNp

k¼1 wk

ð10Þ

where �(�) is the thermochemical density computed

using the particle composition. The initial conditions are
chosen such that �� > = ��p at t = 0. As the particles
evolve in space and time, the density fields evolve

through different equations, though indirectly, they
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should all satisfy the continuity equation. By construc-
tion [7], the thermochemical density (��p) and the LES

density (��) evolve closely. This is ensured by solving an
ancillary enthalpy transport equation using Eulerian
schemes. The source term for the enthalpy equation is

provided using the particle properties. The Eulerian
density is obtained directly using this enthalpy field [8].

On the other hand, the particle-weights-based density

(��w) evolves with the particle motion. Based on the
continuity equation, it can be shown [6] that for the
particles to be uniformly distributed, the particle-
weights-based density should be equivalent to the

Eulerian density field. However, the stochastic evolution
scheme will make the particle-based mean fields noisy.
Hence a strict equality can be obtained only by time-

averaging a statistically stationary field. Finite particle
number density can also introduce bias in the mean
fields. This will lead to a progressive divergence of the

particle-weights-based density field from the Eulerian
field. Such a bias will be readily observed through par-
ticle agglomeration in certain sections of the grid and

depletion of particles in other regions. The sampling
error induced by such low particle number density will
further increase the error in mean-field estimation.

A consistent algorithm should hence maintain the

equivalence of the three density fields described above. It
is noted that this amounts to a consistent evolution of
the zeroth moment of the FDF-transport equation. The

accuracy of the scheme can be tested using higher-order
moments of the same equation. For the single-scalar
flamelet model used here, the first moment of the scalar

can be evolved simultaneously by both the particle and
Eulerian systems. Such a moments-based validation
procedure ensures a robust yet simple way of demon-
strating the accuracy of the numerical implementation.

We illustrate the validation criteria using an experi-
mental flame next.

4. Numerical test

A bluff-body stabilized experimental flame is simu-
lated using the LES-FDF scheme. The methane/
hydrogen fuel jet is separated from the coflow of air by a

solid body (Fig. 1). The presence of this bluff-body
induces strong recirculation zones that stabilize the
flame. In fact, time-averaged streamtraces (Fig. 2) show

the presence of two counterrotating vortices that help
mix the coflow with the fuel. The interaction of the high-
velocity jets with the slow recirculating fluid creates high
shear rates where the reaction is controlled pre-

dominantly by mixing. This complex unsteady reacting
flow makes an ideal candidate for testing the LES-FDF
scheme. A computational domain of 256 	 128 	 32 is

used along with a nominal particle number density of 15.

Combustion is described using a laminar flamelet
chemistry. Further details of the simulation and the

experimental configuration can be found in [7].
Figure 3 shows time-averaged radial profiles of the

three density fields. The density profiles show excellent

agreement indicating that the FDF implementation is
accurate. It was further confirmed that the time-aver-
aged particle number density was constant indicating

Fig. 1. Schematic of the bluff-body flame configuration. The jet

diameter D is 3.6mm.

Fig. 2. Streamtraces of the time-averaged velocity vector

showing the counter-rotating vortices.
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that there was no long term accumulation of statistical
errors. Figure 4 shows the comparison of the first
moment of the scalar, namely time-averaged filtered

mixture-fraction. Again the agreement between the
Eulerian and Lagrangian fields is excellent. In addition,
excellent agreement is noticed with experimental data as
well illustrating the superior predictive capabilities of

this method.

6. Conclusion

The LES-FDF scheme has been validated by using a

density-based consistency condition. An experimental

flame configuration was used to test the validation
scheme. Currently, finite-rate chemistry is being used
with a detailed chemical mechanism to fully exploit the

advantages of the LES-FDF technique.
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Fig. 3. Comparison of density obtained from particle weights (dashed line), particle composition (solid line) and LES flow solver

(symbols). The plots are at downstream locations of (left) x = 13 and (right) x = 30mm, respectively. The density values have been

normalized by the density of the coflow.

Fig. 4. Comparison of mean mixture fraction and RMS mixture fraction profiles with experimental data at different axial locations of

(left) x = 13 and (right) x = 30mm. Symbols are experimental data, solid line shows the FDF-based result and dashed line shows the

Eulerian calculation.
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