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Abstract

The eigenspectrum for the planar Poiseuille flow of two immiscible Phan-Thien Tanner liquids is studied. The

numerical method is to discretise spectrally employing the Chebyshev-tau method and the full set of eigenvalues are
determined by the QZ-algorithm. The effects of variations in the fluid parameters are investigated and comparisons are
made between the two-fluid and single fluid cases. The flow is found to be stable for the ranges of parameters

investigated so far.
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1. Introduction

Many products are derived through the extrusion or

coextrusion of polymer melts and polymer solutions
such as multilayered films and coating. Often it is
desirable for the final product to be smooth and undis-
torted so as to maximise the quality and use of the

product. Investigations of the stability of these fluid
flows can lead to enlightenment as regards optimal
choices within the manufacturing process.

Much work has been done on the stability of Poi-
seuille flows of Oldroyd-B and UCM fluids, for example
Wilson et al. [1] and Ganpule et al. [2], and has shown

few instabilities. A recent stability analysis of the Poi-
seuille flow of the exponential form of the PTT model by
Grillet et al. [3] has predicted the onset of instabilities

within certain ranges of the model parameters. The work
described in this paper considers a linear stability ana-
lysis of the linear PTT model to determine whether or
not a similar conclusion holds for this version of the

PTT model. The results given by Palmer et al. [4]
describe the eigenspectra for the Poiseuille flow of a
single linear PTT fluid and this work is extended here to

the case of two immiscible fluids within the same
channel.

2. Formulation

The problem under consideration is that of planar

Poiseuille flow of two immiscible Phan-Thien Tanner
fluids. The geometry is two-dimensional with the x-
direction being the direction of the flow. Fluid 1 occu-
pies the lower layer within the channel, y 2 [0, l], and

fluid 2 occupies the upper layer, y 2 [l, 1].
The Phan-Thien Tanner models [5,6] for polymer

melts and solutions are derived from a Lodge-Yama-

moto type of network theory [7,8,9,10] whereby the
polymer molecules are represented as chains with junc-
tions at the points where molecules meet. The junctions

can be created and destroyed as the fluid moves and are
also allowed to slip along the chains such that the strand
stretching and total motion of the fluid are not neces-

sarily related by an affine transformation.
The nondimensional governing equations to be used

are the conservation of momentum, continuity and the
Phan-Thien Tanner constitutive equations, respectively:
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Here the general convective (Johnson-Segalman) deri-
vative of the stress tensors is

� ¼ @�
@t
þ ðv � rÞ� � L� � �LT ð4Þ

the relationship between strand-stretching and total fluid
motion is

L ¼ rv� �d ð5Þ

and the rate of strain is given by

d ¼ 1

2
ðrvþ ðrvÞTÞ ð6Þ

The subscript j = 1, 2 denotes the fluid to which the
equations correspond. The vectors vj denote the velo-

cities, pj denote pressures and � j denote the stress
tensors. There are four dimensionless parameters for
each fluid; the Reynolds numbers Rj, the Weissenberg
numbers Wj (a measure of the elasticities of the fluids),

the solvent to total viscosity ratios �j ¼
�sj
�tj

and the

comparative total viscosity ratios mj ¼
�tj
�t1
. The adjus-

table parameters of the PTT fluid are the extensional
parameter � and the shear-thinning parameter E. The

PTT fluid model reduces to the Oldroyd-B model for
polymer solutions when E = � = 0 and further reduces
to the UCM model for polymer melts when � = 0.
For the solution of the base flow it is assumed that the

flow is one-dimensional and hence dependent on y only.
The boundary conditions are no slip at the channel
walls,

ðuBÞ1 y¼0
�� ¼ 0 ð7Þ

and

ðuBÞ2 y¼1
�� ¼ 0 ð8Þ

The presence of the interface introduces the requirement
for expressions of continuity of velocity and traction

across this interface.
The linear stability analysis and the computation of

the eigenspectrum is performed in the usual manner by

considering small perturbations to the base flow in the
form �uei�x+�t where � is the eigenvalue and the �u are of
infinitesimally small magnitude such that quadratic and

higher-order terms can be neglected.

3. Numerical method

Neither the base flow nor the eigenspectrum has been
fully calculated analytically so numerical solutions are
sought. A spectral method is followed whereby the

equations are discretised using the Chebyshev-tau

method. All flow variables are approximated by expan-
sions in terms of Chebyshev polynomials. The infinite

sequence of Chebyshev polynomials is an exact repre-
sentation of the flow variables but for computational
purposes it is necessary to take an approximation to the

variables as

zN ¼
XN
n¼0
½ẑ�n½T�n ð9Þ

where N is suitably large. Thus the accuracy of the

numerical solution is governed by the chosen value of N.
Discretising in this manner leads to the vector

equation

ðTBÞT � FB � zB ¼ 0 ð10Þ

for the base flow and

ðTLSEÞT � ALSE � zLSE ¼ � ðTLSEÞT � BLSE � zLSE ð11Þ

for the linearised stability equations (LSEs). The vectors
TB and TLSE contain the Chebyshev polynomials, the
vectors zB and zLSE contain the Chebyshev coefficients

and the matrices FB, ALSE and BLSE contain coefficients
expressing the relationships between the Chebyshev
polynomials and coefficients as determined by the gov-
erning equations.

Given a satisfactory initial guess for the values of the
Chebyshev coefficients taken from the analytical solu-
tions for the Oldroyd-B model, Newton iteration is used

to find a discrete representation of the base flow within a
given tolerance.
In order to find the complete eigenspectrum the base

flow results are substituted into the LSEs and the entries
of the matrices ALSE and BLSE are used by a NAG
routine to compute the eigenvalues of the system using

the QZ-algorithm [11]. Since the base flow results are
required for the solution of the LSEs the same value of
N is used in the discretisations of the base flow equations
and the LSEs.

4. Results

The main results are shown in Figs 1, 2 and 3. For the
two-fluid problem the eigenspectrum consists of two
eigenspectra overlying one another and these are very

similar to those found for the single fluid problem but
with the addition of a marginally stable interfacial
eigenvalue. The eigenspectra for the single fluid flows
consist of two parts, which are referred to as the ‘Old-

royd-B’ part and the ‘UCM’ part in the literature. All
results here are for W = 1, R = 0, � = 0.2, � = 1 and
with the interface at the midpoint of the channel. For

these parameter values the UCM eigenspectrum lies near
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to <ð�Þ ¼ �1 ¼ �1=w and the Oldroyd-B part near to
<ð�Þ ¼ �5 ¼ �1=w�. Both of these parts of the eigen-
spectrum consist of a continuous part with a number of

discrete eigenvalues within close proximity. The con-
tinuous spectra reveal themselves as ‘balloons’ of
eigenvalues and these balloons become narrower as the

number of Chebyshev modes is increased, thus

increasing the resolution of the results. All results given
in this paper are for N = 90.
Figures 1 and 2 show the effect of altering the shear-

thinning parameters Ej. The pluses show the eigenspec-
trum for the case when the fluid parameter values are the
same in each fluid. This is equivalent to the single fluid

problem and the results correspond with earlier results

Fig. 1. The Oldroyd-B part of the eigenspectra for the parameter values �1 = �2 = 0, E1 = E2 = 0.05 (+) and E1 = 0, E2 = 0.05 (�).

Fig. 2. The UCM part of the eigenspectra for the parameter values �1 = �2 = 0, E1 = E2 = 0.05 (+) and E1 = 0, E2 = 0.05 (�).
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for the single fluid [4]. The tilt of the eigenspectra

towards the negative reals increases as E is increased,
which would imply that, in this case, shear-thinning has
a stabilising effect. The circles show the eigenspectrum

when the shear-thinning parameter is nonzero in only
one fluid. It is of no consequence which fluid is given the
higher value of E since there is no consideration of

gravity in this problem. It is clear that there are two
eigenspectra overlying each other, one being very similar
to that found for a single Oldroyd-B fluid [1] and the
other being similar to that found for a single fluid with

E = 0.05. There is some interaction between the two
eigenspectra however and this would be expected since
the fluids themselves will interact at the interface. This

interaction between the fluids reveals itself by the dif-
ferences between the two eigenspectra for the two-fluid
flow and the single fluid equivalents. The main trend

however, that the introduction of shear-thinning has a
stabilising effect, is unchanged. The interfacial eigenva-
lue, although not shown in Figs 1 or 2, remains

marginally stable at � = ��i for all investigated values
of the fluid parameters.
Figure 3 shows the effect of altering the extensional

parameters �j. The most obvious effect is that an increase

in the value of � causes severe tilting of the eigenspectra
towards the positive reals. This effect is more pro-
nounced for the Oldroyd-B part but as � is increased

then the distortion to the UCM part is such that the
spectrum begins to turn back onto itself, the early stages
of which are shown here in Fig. 3. Again the eigen-

spectrum for the two fluid problem, where only one fluid

has a nonzero value for �, consists of one eigenspectrum
overlying the other. It can be seen that the ‘turning back’
of the UCM spectrum is more pronounced for the two
fluid problem and so the causes of this distortion to the

spectrum are likely to be associated with the interactions
between the two fluids.
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