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Abstract

We examine a family of approximate projection methods for colocated, unstructured finite volume methods for the
incompressible Navier–Stokes equations. Some combinations of pressure stabilization and projection time scale lead to
unstable time integration. We explore the stability limits using numerical experiments.
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1. Introduction

Consider the class of approximate projection algo-
rithms typically used to solve the incompressible
Navier–Stokes equations on colocated, unstructured,

finite-volume meshes. The momentum and continuity
equations are split and solved in a segregated manner in
order to simplify the solution procedure. The splittings
can be abstracted to a general family of approximate

factorizations. By design, the factorization errors are
constructed to provide pressure stabilization (smooth-
ing) and some means for computing a pressure that

enforces mass balance. A time scale is required to relate
velocity corrections in the mass balance to pressure
corrections. This projection time scale is usually related

to the time step or a characteristic time scale derived
from the local velocity and mesh length scales.
Splitting approaches based on Helmholtz decom-

position are typically derived from a semi-discrete form

of the momentum equations and the projection scaling
tends to be the time step [1,2,3,4]. Approaches based on
matrix coefficients such as those in the SIMPLE family

of schemes [5,6,7] use the fully discrete form of the
momentum equations and the projection scaling tends to
be a mix of the time step and a local characteristic time

scale. We introduce the notion of a general projection
time scale, � .
Most projection methods for colocated, finite-volume

meshes are approximate. A projection method for a
solenoidal velocity field is approximate when there are

errors in the continuity equation and the discrete velo-
city field is not divergence-free. There can be additional

splitting errors in the momentum equations. The error
terms are consistent in that they reduce under mesh
refinement. The terms not related to pressure stabiliza-

tion can be reduced under nonlinear iteration. The
splitting errors can be related to at least three behaviors
[8]: the pressure field may have wiggles, there may be a
time integration instability, and steady-state solutions

may depend on the time step. We focus on the time
integration stability issue here for time-marching pro-
cedures (primarily for steady problems).

A time step instability can occur when the projection
time scale is smaller than the time step and is most
apparent when the projection time scale is the convec-

tion scale. In our schemes, we select a variable time step
such that we achieve a target CFL condition for the
smallest convection time scale on the mesh. Convection
is treated implicitly so we can take large time steps with

CFL>1. The stability problem can be circumvented by
using implicit under-relaxation, increasing the projection
time scale, or adding stabilizing terms to the projection.

Several approximate projection methods are char-
acterized in terms of time step stability. The methods are
cast in an approximate factorization [9,10] form and we

introduce a three-time-scale parameterization. We
experiment with the limits of stability.

2. Numerical method

The numerical method is based on a finite-volume

discretization of the equations on an unstructured finite-
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volume, vertex-centered mesh [11]. The results reported
in this paper are generated on cell-centered meshes, but

the projection formulations and the stability behaviors
are similar to our vertex-centered results [8]. We use
backward-Euler time integration with an implicit treat-

ment for convected values and diffusion. Our control-
volume approach is cast in conservative form and mass
is balanced across each control volume.

The discrete momentum and continuity equations are
written in matrix form in Eq. (1). The matrix A contains
discrete, linearized contributions to the momentum
equations from the time derivative, convection, and

diffusion terms,

A G

D 0

� �
Unþ1

Pnþ1

� �
¼ f

0

� �
ð1Þ

The discrete nodal gradient is G and the discrete nodal
divergence is D. The function f contains the additional
terms for the momentum equations. The velocity com-

ponents are U and the pressure is P. The density is unity.
A general approximate factorization of Eq. (1) takes

the form of

A 0

D B1

� �
I B2G

0 I

� �
¼ A AB2G

D B1 þDB2G

� �
ð2Þ

The factor B2 determines the projection time scale. We

choose B2 = � to be a diagonal matrix, though the ideal
form is A�1. The factor B1 defines the linear system for
pressure. Ideally, B1 could be selected to cancel splitting

errors in the continuity equation. Practically, the form of
B1 is governed by implementation and linear solver
efficiency.

We categorize the approximate projection methods as
unsmoothed, smoothed, and stabilized depending on the
relationship between B1, B2, and additional balancing

terms. A smoothed scheme implies pressure stabilization
and has good pressure smoothing properties. An
unsmoothed scheme has no pressure stabilization and
can admit pressure oscillations. A stabilized scheme is

stable with respect to time integration for large time
steps and usually has good pressure smoothing proper-
ties. We write a family of schemes using three projection

time scale parameters �1, �2, and �3.
The split momentum and continuity equations are

A 0

D �L1

� �
U��

P��

� �
¼ fðUn;U�Þ �GP�

�L1P
� þ ðL2 �D�2GÞP�

� �
ð3Þ

where L1 = H�1H and L2 = H�2H. The L operator is the

discrete diffusion operator (L 6¼ DG). The superscripts *
and ** imply guessed and intermediate states. The nodal
correction is performed after the velocity and pressure

solves,

I �3G
0 I

� �
Unþ1

Pnþ1

� �
¼ U��

P��

� �
þ �3GP�

0

� �
ð4Þ

The splitting errors relative to Eq. (1) are found by
combining the matrix factors in Eqs. (3) and (4) (i.e.,
substitute the ** state):

momentum ) ½I� A�3� G ðP�� � P�Þ ð5Þ
continuity ) ½L1 �D�3G� ðP�� � P�Þþ

½L2 �D�2G� P� ð6Þ

The pressure stabilization terms are scaled by �2. The
terms scaled by �1 and �3 are related to the pressure
solve and velocity correction; the form of these two time
scales seemingly affects time integration stability. In

implementation, only two time scales are stored since
cancellation requirements in Eqs. (5) and (6) lead to
repeated values. The family of schemes is shown in

Table 1.

3. Numerical experiments

The limits of projection time scales are explored for
schemes susceptible to time integration instability,

namely the unsmoothed and smoothed schemes (see Table
1). The velocity-driven cavity [12] is used as a demon-
stration case, though we also note similar behavior for

other confined flows and open jets and plumes [11]. The
mesh is a uniform 80�80 elements with Re=100 based
on lid velocity and cavity length. The solutions are time-
marched from zero initial velocity to steady-state with

an adaptive time step that maintains a constant value of
the maximum nodal CFL number, C. The time step is
�t = C�min (�c), where �c is the convective time scale.

We generally find that the time integration remains
stable when the projection time scale is greater than or
equal to the time step, so consider the measure R = �t/

min (�).

Table 1

Each projection method in the family is defined by two time

scale values and � is either the time-step or a local characteristic

time scale. Examples of related schemes are drawn from ana-

logous staggered-mesh methods (SIMPLE), finite element

methods, and other stabilization methods

Category Projection time scales Related schemes

unsmoothed �1 = �3 = �t, �2 = 0 [1,2,3,4]

�1 = �3 = �A, �2 = 0 [6]

smoothed �1 = �2 = �3 = �t [4]

�1 = �2 = �3 = �A [5,7]

stabilized �1 = �A + �t, �2 = �3 = �A [13]

�1 = �3 = �t, �2 = min(�A,

�t)

[14]
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The first observation is that time step scaling always
permits stable time integration for any CFL number. If

the time scale is reduced, � = 
�t, then the method
becomes unstable for 
 < 1/2, though this is not a
universal result and is seen to be reduced in the Stokes

regime. Generally, the limiting value is Rlim = 2. Results
are confirmed for 2X steps up and down in mesh reso-
lution and 10X steps up and down in Reynolds number.

A physical characteristic time scale often results when
schemes are derived from matrix coefficients [6,7], �A =
�c (1 + 4/Re�)

�1, where Re� is a cell Reynolds number
and we have approximated the convection and diffusion

terms for a 2D problem. Applying a similar scale factor
to characteristic time scaling, � = 
�A, the scheme can
be made stable for C > 1, and 
 
 C

Rlim
ð1þ 4=Re�Þ. The

trend was confirmed at 10X steps up and down in
Reynolds number, but does not hold in the Stokes
regime.

Implicit relaxation, !, is often used to stabilize the use
of the characteristic time scale [8]. The diagonal of the
momentum matrix is scaled by 1/! and the projection

time scale is scaled by !. The resulting ratio of artificial
time step to relaxed projection time scale is

R 
 !ð�t�1 þ ð1� !Þmax½ð1þ 4=Re�Þ=�c�Þ�1

! �min½�cð1þ 4=Re�Þ�1�
ð7Þ

¼ Cð1þ 4=Re�Þ
1þ Cð1� !Þ ð1þ 4=Re�Þ

ð8Þ

The limiting relaxation behaves as ! 
 min
1,1� 1

Rlim
þ ð1þ4=Re�Þ�1

C

h i
Stability limitations disappear with a fully-coupled

approach. A fully-coupled scheme can be derived from
Eq. (3) by treating the pressure gradient in the
momentum equations implicitly. Numerical experiments
indicate that this family of schemes is stable for any

selection of projection time scale and time step.

4. Concluding remarks

We define a general three-parameter formula for a

family of approximate projection methods commonly
found in literature. The schemes are different in their
approaches to pressure stabilization and projection time

scaling. We have performed numerical experiments to
characterize stability boundaries for different projection
time scales. The methods become unstable with respect
to time integration when the projection time scale is

smaller than the time step. The numerical experiments
indicate some general limiting parameter relationships
for stability. Under-relaxation is often used for stability

and we relate the modified time scales to the limiting
relationships. Future work will focus on a rigorous

numerical analysis of the methods to prove the stability
boundaries.
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